Invertebrate, Sediment and Blue Carbon attributes within an Estuarine System in relation to Disturbance Regime

Englishman River Estuary - Michael O'Toole

Estuaries: in Squamish and BC

Disturbance to Estuaries

Importance of Monitoring

Restoration

Recovery

Primary Research Question:
How is a mudflat estuary recovering from disturbance?

(and restoration)

Photo: Nature Conversancy

Photo: H. Knox

Hypothesis:

A disturbed ecosystem is expected to have different characteristics than a site less impacted by anthropogenic development, due to altered successional trajectories.

Null Hypothesis: There is no difference among sites.

Graphical Abstract for: Roberts, E. M., Stroshein, S.D, and Bendell, L.I. (submitted for publication, 2018). Invertebrate, sediment, and blue carbon attributes within an estuarine ecosystem in relation to disturbance regime.

Outline

- Study Area Squamish Estuary
 - History of Disturbance
 - Study Site / Sampling Design
- Variables
 (Invertebrates, Sediment, Blue Carbon)
 - Methods
 - Results
- Discussion and Implications
 - For Restoration
 - For Research

Study Area – and Disturbance

Post Restoration Imagery

Study Sites

Disturbance Levels: 3

Sample Sites: 15x3

Invertebrate Variables:

- Species Richness
- Species Diversity
- Biomass
- Count

Sediment Variables:

- Particle size
- Total organic carbon
- Water content

Blue Carbon Variables:

Fine Woody Debris

Analysis: Statistical Approach

Goal:

- Are the sites different?
- How are they different?

Invertebrate Biomass

- Log(x+1) transformation
- Kruskal-Wallis Test

Sediment Characteristics

- Arcsine transformation
- Principle Component Analysis
- Analysis of Variances (ANOVA)

Blue Carbon

Conversion factor

Results: Sediment Analysis

Results: Sediment Analysis

Results: Invertebrate Biomass

Macoma Clams

Macoma balthica Macoma nausta

Bloodworm Glycera americana

Polychaete - Bloodworm Photo: E. Roberts High Medium Low

Total Invertebrates

Macoma balthica Macoma nausta Glycera americana

Results: Blue Carbon

Summary

Invertebrate

- Delayed secondary succession response on restored site
- Community different than historical records (post-dike installation)

Sediment

- Gradient across sites
- Increased proportions of fine sand on restored site

Discussion

Blue Carbon from Wood

- Fine woody debris is a potentially significant source of carbon in tidal flats
- Additional research warranted for carbon accounting initiatives

Cumulative effects

 Must consider to determine "fit-for-purpose" restoration treatments/ monitoring

Looking Forward

- Additional years of monitoring
- Additional monitoring metrics
 - Salinity
 - Invertebrates (all size classes)
 - Additional ecotypes (salt marsh, tidal channel)
- Identifying a reference ecosystem (goal)

Acknowledgements

Squamish River Watershed Society

Edith Tobe

BCIT

- Dr. Kenneth Ashley
- Dr. Douglas Ransome
- Dave Harper

SFU

- Dr. Leah Bendell
- Sumara Stroshein
- Javad Shushtarian
- Olivia Gutjahr
- Margaret Yip
- Dr. Jonathan Moore

DFO

Dr. Colin Levings

And all the volunteers in the estuary!

