Applications of adaptable and quantitative soil quality assessment framework in land reclamation

Abimbola Ojekanmi, MSc Department of Renewable Resources University of Alberta, Edmonton, Alberta.

Introduction

- Ecosystem restoration includes reclamation of land (soil, water, vegetation etc.) to ensure sustainability of land use operations
- Soil is a critical component of ecosystem that influences overall ecosystem health
- Soil quality implies capability to perform specific functions
- Therefore, conservation and maintenance of soil quality influences the success of land reclamation operations

Soil quality assessment (SQA) in land reclamation

- Soil quality assessment recent advances
 - Focus on quantifying and monitoring soil's functions
 - Use multi-indicators framework to integrate physical, chemical and biological functions
 - Use rating functions and quality scores to integrate multiple functions
- Applications in land reclamation
 - Soil conservation, profile reconstruction, reclamation (soil) cover design, temporal assessment of functionalities in reclamation covers, performance of vegetation, etc.

Land Reclamation: Alberta Oil Sands

Challenges - SQA

- Use of generic criteria address site specific issues
 - Example , soil pH (6 8) is not the optimum range of pH for nutrient supply in a/b ecosites litters supporting the growth of jackpines
- Current approach to SQA qualitative/semiquantitative, with emphasis on land capability and static indicators
 - Need for quantitative approach that account for variability in baseline parameters
- Lack of correlation between SQ indicators, quality rating and important soil/ecosystem functions such as plant productivity, nutrient supply potentials, etc.

Research - Objective

- Need to propose a quantitative soil quality assessment framework in land reclamation that ;
 - Correlates with critical soil and ecosystem functionalities
 - Integrate multiple functions
 - Address site specific challenges
 - Suitable for monitoring long term quality improvement
- Demonstrate the applicability and transferability of the such framework to similar soil types and process

Design of proposed framework

- □Similar to SMAF (Andrews et al., 2004), CASH (Fine et al., 2016), etc.
- Emphasis on the applications of soil quality functions or ratings functions (Stott et al. 2004)
- Identify predictive indicators (SOC, pH, EC, texture....) and direct measure of performance (plant productivity, nutrient supply, biomass yeild, ...)
- Calibrate predictive indicators to measure of performance using various numerical techniques : regression, multiple regression, process-based models, empirical models, etc.

Proposed framework for soil quality assessment

Soil quality function / rating functions

Applications in land reclamation

Calibrate predictive indicator – measures of performance

Define boundary condition and functional soil quality zone

Quality ratings can be integrated using statistical tests

Validated SQF – project ecosystem performance

Derive optimized range of soil quality indicator – site specific criteria

http://soilquality.org/tools/interpret_indicators.html

Application I : Assess nutrient supply potentials in reclamation covers

Materials and methods

- Data sources : Development, calibration and analysis of SQF using 10 years soil database (CEMA, SVG).
- Database compiled using Day, J.H., 1983. The Canada Soil Information System (CanSIS). Manual for describing soils in the field, 1982 Revised. Research Branch, Agriculture Canada, Ottawa. *In:* L.A. Douglas and M.L. Thompson (Editors), Soil Micromorphology and Soil Classification. Special Ecological Land Classification Series, No. 24.
- □ Validation and application datasets : Yan et al., 2012; Macyk et al., 2005
- Statistical Analysis : MINITAB using ANOVA
- □ Selection of best fit and differential analysis : Curveexpert with 200 built in and custom functions
- □ Focus on predicting N supply potential based on SOC(Mg/ha) composition

Comparison: Natural and reclaimed soils

- Differences in SOC composition, but similarity in trends of SOC – N relation
 - Similarity in fundamental processes (mineralization)
- Maximum rate of N supply
 - Natural soil = 0.01
 - Reclaimed soil = 0.002
 - 5 orders of difference in rates of N cycling between natural and reclaimed soils

Validation of SQF for site specific use

Test SQF capability to distinguish between forest floor (FF) and minerals soils (MS)'s potential to supply N

 SQ scores produced by the SQF repeat similar significant differences (p < 0.05) in N supply potentials between MS and FF as reported by Yan et al., 2012

Application of SQF - Assess potentials to supply N (Macyk et al., 2015)

Application II : Assess quality of peat mineral mix covers

SQF for rating of PMM covers

Soil quality functions for rating PMM covers

Soil		SQF	x = SOC(%)			
function	SQI	(y = ratings, 0,1)	а	b	С	r ²
		y = a/(1+exp(-(x-c)/b)				
Retain	Field capacity		1.073	0.523	1.750	0.96
moisture for	Permanent	y = a+b*x				
plant's use	wilting point		-8.828	3.120		0.77
	Water holding	y = a/(1+exp(-(x-c)/b)				
	capacity		1.003	0.464	1.661	0.93
Exchange	CEC	y = a/(1+exp(-(x-c)/b)				
cation			0.857	0.503	1.998	0.88
	SAR	y = 1-(1/(1+a*x)^b)				
Salinization			1.233	1.903		0.23
Supply	Nitrogen	y = a/(1+exp(-(x-c)/b)				
essential nutrient			1.074	2.023	0.531	0.97
	Phosphorus	y = a/(1+exp(-(x-c)/b)				
			0.735	0.509	1.380	0.76

Validation of soil quality function

Use 3 independent data sources – similar sites and objectives

	Nitro	gen (%)	CEC(cmol/kg)		
Material Type	Mean	Rating	Mean	Rating	
Peat	0.980 a	1.000 a	183 a	1.00 a	
Sandy Brunisols (B _m)	0.022 b	0.516 b	1.20 b	0.18 b	
Tailings	0.008 b	0.508 b	1.18 b	0.18 b	

(McGill et. al. 1980; Logan, 1978)

 SQF effectively differentiated nitrogen supply and cation exchange capabilities of reclamation materials

Validation of soil quality function

Moskal et al., 1999

Peat	Field capacity (g/100g)		Permanent wilting point (g/100g)		Av. water holding capacity (g/100g)	
mineral		Deting		Dation	D A a a a a	Datina
ratio	ivieans	Rating	ivieans	Rating	ivieans	Rating
3:1	39.7 a	1.0 a	20.1 a	1.0 a	19.6 a	1.0 a
1:1	19.9 b	0.7 b	6.7 b	0.5 b	13.2 ab	0.7 b
1:3	13.4 bc	0.3 c	6.3 b	0.3 c	7.1 bc	0.3 c
0:1	8.20 c	0.1 d	3.7 b	0.0 d	4.6 c	0.1 d

 Ratings represents about 80% of the effect of PMM on moisture retention

Application – Long term quality monitoring in reclaimed soils

 Macyk et. al., 2004 : Observed about 1-2 % decline in carbon level of peat mineral mix in 10-15 years study (Alberta Research Council)

 Confirms the need for continuous nutrient and soil moisture management of reclaimed soils

Conclusions

- Proposed framework :
 - Support the need for consistency in soil quality assessment
 - Applicable to various land use, ecosystems (upland or wetland)
 - Allow for quantitative definition of baseline capability or functionalities

• Rating functions are adaptable and transferable :

- Ability to repeat specific treatment effect at independent site
- Further applications : EIA, site specific criteria, remediation, etc.

Acknowledgement

