BUILDING SOCIAL-ECOLOGICAL RESILIENCE TO WILDFIRE

K. Copes-Gerbitz and L. Daniels, Tree-Ring Lab at UBC, Faculty of Forestry, University of British Columbia

What is social-ecological resilience?

Exploring social-ecological resilience requires use of the following related frameworks:

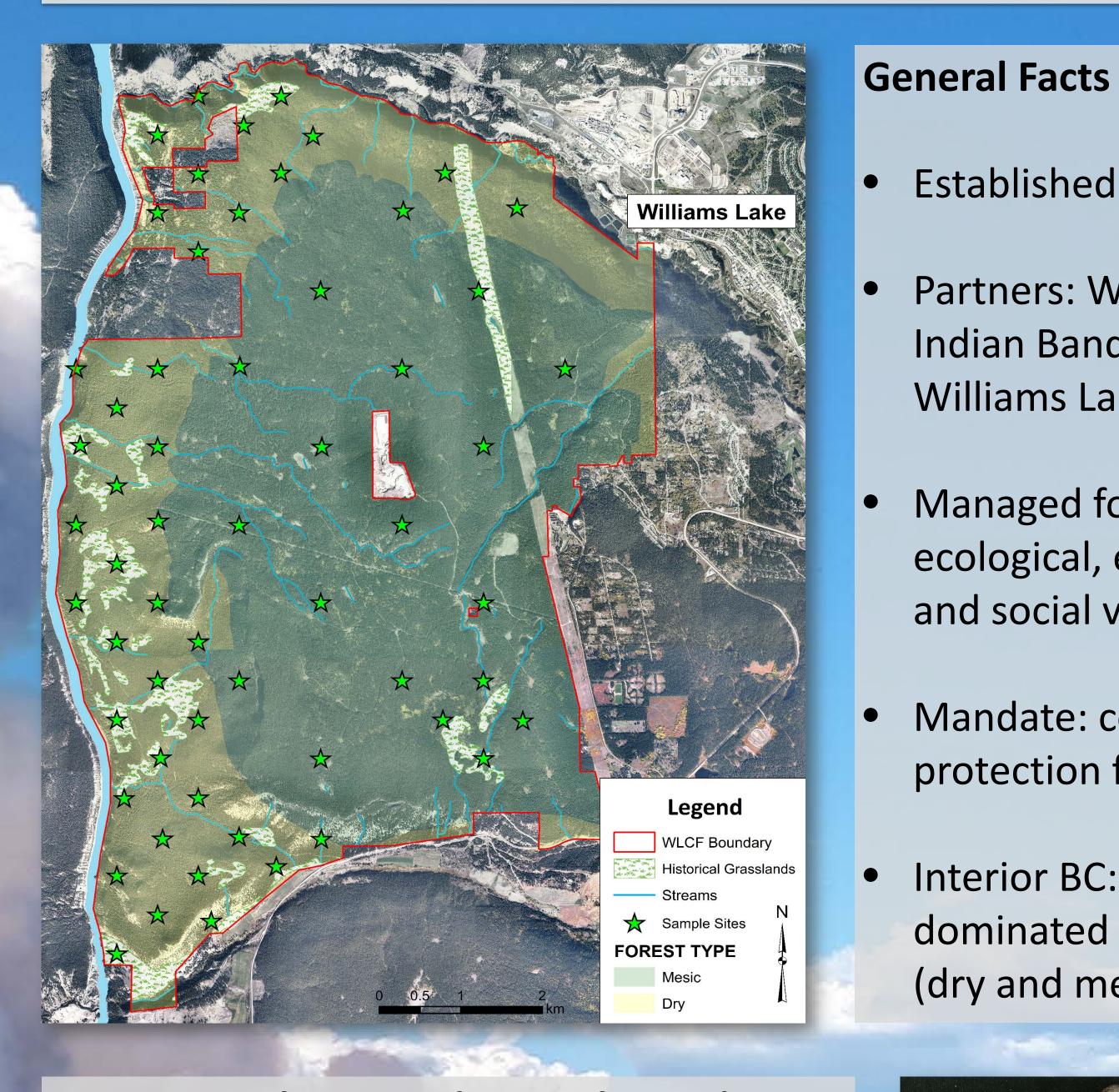
- Social-ecological systems
- Resilience theory
- "Knowledge integration"

Building social-ecological resilience requires knowledge of the historical and modern context of the system

Three-stage research approach

Collaborative, community-based, multi-disciplinary

Research Questions


- What was the social, cultural and ecological role of fire through time?
- What social, cultural, political and ecological drivers may have altered this role through time?

Objectives & Methods

- Determine historical fire frequency and severity through forest demography
 - Forest composition and structure through dendrochronological methods
- Explore the Indigenous peoples' paradigm regarding wildfire in the region
 - Focus groups and participant observation with key fire knowledge holders
- Develop profile of changing wildfire governance (policy and practice) in the region
 - Systematic document review and semistructured interviews with key actors regarding objectives influencing wildfire policy

The Williams Lake Community Forest

Ne Sextsine (Flat Rock) Block (above)

- 6000 hectares
- Traditional territory of the Williams Lake Indian Band (T'exelc)
- Wildland-urban interface of Williams Lake (adjacent to multiple communities)
- Known archaeological and cultural heritage features
- Historical overwintering home site for T'exelc peoples
- Visible evidence of historical fire (right), particularly in grassland areas

Established 2014

Williams Lake

Partners: Williams Lake

Indian Band and City of

Managed for multiple

Mandate: community

dominated forests

protection from wildfire

Interior BC: dry, Douglas-fir

(dry and mesic subzones)

and social values

ecological, economic, cultural

Forest composition and structure

At each plot, *n*-tree design used where *n=10* for both canopy and sub-canopy trees

- 1000 trees total
- 97% Douglas-fir, 2% Spruce, <1% Lodgepole pine
- Two distinct forest types: dry and mesic

DRY FOREST TYPE

Average Plot Statistics (n=30)

- Aspect: 247°
- Angle: 14.7°
- Elevation: 614m
- # Stumps: 1.0–1.6
- # Saplings: 1.9
- # Snags: 3.0

MESIC FOREST TYPE

Average Plot Statistics (n=20)

- Aspect: 193°
- Angle: 9.7°
- Elevation: 897m
- # Stumps: 4.3–5.6
- # Saplings: 1.6
- # Snags: 2.4

Average Tree Statistics

41.7	Canopy tree DBH (cm)	39.4
21.2	Sub-canopy tree DBH (cm)	20.1
132	Canopy tree density (trees/ha)	207
471	Sub-canopy tree density (trees/ha)	356

Site-specific understanding of historical forest demography and fire history is critical for enabling long-term resilience to future wildfires

CONTACT: kelseycg@mail.ubc.ca

lori.daniels@ubc.ca

Funding provided in part by The UBC Public Scholars Initiative, **UBC Faculty of Forestry Aboriginal** Community Research Seed Funding, & an anonymous donor

Thank You to the Williams Lake Community Forest and the Williams Lake Indian Band for collaborating on this research. Thank you also for guidance from K. Day, W. Spearing, C. Koot, G. Greene, J. Gatezlmundi, K. Green, D. Skea, H. Flinton and for field and laboratory assistance from O. Raybould, S. Forcier, I. Mott, C. Walters, S. Bronson, and E. Shebib.

Background Image: View towards Sugar Cane (Williams Lake Indian Band Reserve) and Miocene fires on July 7, 2017