Day 1 | Restoration across drylands: Introduction and overview of efforts, tools, and modes of thinking about

Welcome

Olga Kildisheva¹ ¹The Nature Conservancy, Bend, OR, USA

Introduction to the workshop

Lauren Svejcar¹ and Todd Erickson^{2,3} ¹US Department of Agriculture, Agricultural Research Service, Burns, OR, USA ²School of Biological Sciences, The University of Western Australia, Perth, Australia ³Kings Park Science, Botanic Gardens and Parks Authority, Department of Biodiversity, Conservation, and Attractions, Perth, Australia

Global Arid Zone Project: opportunities for evaluating seed-based restoration success

Nancy Shackelford^{1,2}, Gustavo Paterno³, Daniel Winkler⁴, Lauren Svejcar⁵, Todd Erickson^{6,7}, Katharine Suding²

¹University of Victoria, Victoria, Canada
²University of Colorado at Boulder, Boulder, CO, USA
³Göttingen University, Göttingen, Germany
⁴US Geological Survey, Moab, UT, USA
⁵US Department of Agriculture, Burns, OR, USA
⁶University of Western Australia, Perth, Australia
⁷Kings Park Science, Botanic Gardens and Parks Authority, Department of Biodiversity, Conservation, and Attractions, Perth, Australia

RestoreNet: an emerging dryland restoration network to increase revegetation success

Seth M. Munson¹, Bradley J. Butterfield², Hannah L. Farrell¹, Caroline A. Havrilla³, Katherine M. Laushman¹, Molly L. McCormick¹, Kathleen R. Balazs², Elise S. Gornish⁴, Akasha M. Faist⁵, Loralee Larios⁶, Michael C. Duniway⁷, Sasha C. Reed⁷

¹US Geological Survey, Flagstaff, AZ, USA

²Northern Arizona University, Flagstaff, AZ, USA

³Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, USA ⁴University of Arizona, Tucson, AZ, USA

⁵Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, USA ⁶University of California, Riverside, CA, USA

⁷US Geological Survey, Moab, UT, USA

Insights into the spatiotemporal variability of restoration seeding barriers in the Great Basin

Stella Copeland¹, John Bradford², Stuart Hardegree³, Daniel Schlaepfer^{4,5}, Kevin Badik⁶ ¹US Department of Agriculture, Agricultural Research Service, Burns, OR, USA ²US Geological Survey, Flagstaff, AZ, USA ³US Department of Agriculture, Agricultural Research Service, Boise, ID USA ⁴US Geological Survey, Flagstaff, AZ, USA ⁵School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA ⁶The Nature Conservancy, Reno, NV, USA

Break-out discussion

How the timing of environmental stress influences seed and seedling survival in the Great Basin

Jeremy James¹, Matt Rinella², Roger Sheley³ ¹California Polytechnic State University, San Luis Obispo, CA, USA ²US Department of Agriculture, Fort Keogh LARRL, Miles City, MT, USA ³US Department of Agriculture, Agricultural Research Service, Burns, OR, USA

Using a precision restoration framework to identify barriers to restoration in complex rangeland landscapes

Chad S. Boyd¹, Stella M. Copeland¹, Owen W. Baughman³, Kirk W. Davies¹, Jay Kerby^{3,4}, Olga A. Kildisheva⁵, Tony Svejcar², Lauren Svejcar¹ ¹US Department of Agriculture, Agricultural Research Service, Burns, OR, USA ²Oregon State University, Burns, OR, USA ³The Nature Conservancy, Burns, OR, USA ⁴Self-employed, New Zealand ⁵The Nature Conservancy, Bend, OR, USA

Balancing competition and facilitation in restoration practices

Lauren Porensky¹ and Elizabeth Leger² ¹US Department of Agriculture, Agricultural Research Service, Fort Collins, CO, USA ²University of Nevada, Reno, Reno, NV, USA

Discussion and Q&A

Day 2 | Seed technologies: coating and flash flaming

Introduction and webinar recap

Olga Kildisheva¹ ¹The Nature Conservancy, Bend, OR, USA

A snapshot introduction to seed enhancement technologies: an Australian perspective

Todd Erickson^{1,2}, Monte Masarei¹, Andrew L. Guzzomi¹, Elvan Ling¹, Alison L Ritchie^{1,2}, Bianca Berto^{1,2}, Vanessa Brown^{1,2}, Matthew D. Madsen³, Jeremy J. James⁴, Scott R. Abella⁵, Miriam Muñoz-Rojas⁶, David J Merritt^{1,2}

¹The University of Western Australia, Perth, Australia ²Kings Park Science, Botanic Gardens and Parks Authority, Department of Biodiversity, Conservation, and Attractions, Perth, Australia ³Brigham Young University, Provo, UT, USA ⁴California Polytechnic State University, San Luis Obispo, CA, USA ⁵University of Nevada, Las Vegas, AZ, USA ⁶University of New South Wales, Sydney, Australia

Uses and application of seed coating, priming and flaming in native forage grasses Bianca Berto¹, Alison L Ritchie^{1,2}, Todd E Erickson^{1,2} ¹The University of Western Australia, Perth, Australia ²Kings Park Science, Botanic Gardens and Parks Authority, Department of Biodiversity, Conservation, and Attractions, Perth, Australia

Indigenous bacteria and cyanobacteria as seed bio-primers in dryland restoration Miriam Muñoz-Rojas¹

¹University of New South Wales, Sydney, Australia

Break-out discussion

Activated carbon coating as a possible alternative to pelleting for herbicide protection of native seed: Early lab results, current challenges, and next steps.

Owen Baughman¹, Roxanne Rios², Olga Kildisheva¹ ¹The Nature Conservancy, Burns, OR, USA ²USDA Agricultural Research Service, Eastern Oregon Agricultural Research Center, USA ³The Nature Conservancy, Bend, OR, USA

Use of fungicide seed coatings to improve restoration efforts where sown seeds have long soil incubation times

Matthew Madsen¹, Travis Sowards¹, Benjamin Hoose¹ ¹Brigham Young University, Provo, UT, USA

Discussion and Q&A

Day 3 | Seed technologies: Pellets, pods, pucks, and seed balls

Introduction and webinar recap

Olga Kildisheva¹ ¹The Nature Conservancy, Bend, OR, USA

Using activated carbon seed technologies and pre-emergent herbicides to restore perennials in annual grass invaded rangelands

Kirk W. Davies¹ and Danielle Clenet² ¹US Department of Agriculture, Agricultural Research Service, Burns, OR, USA ²US Department of Interior, Bureau of Land Management, Santa Barbara, CA, USA

Refining extruded pellets to improve herbicide protection and seedling emergence

Vanessa Brown^{1,2}, Alison Ritchie^{1,2}, Todd Erickson^{1,2}, and Richard Hobbs² ¹The University of Western Australia, Perth, Australia ²Kings Park Science, Botanic Gardens and Parks Authority, Department of Biodiversity, Conservation, and Attractions, Perth, Australia

Developing extruded seed pellets to overcome hydrophobicity and emergence barriers

Alison Ritchie^{1,2}, Jason Stevens^{1,2}, Todd Erickson^{1,2} ¹The University of Western Australia, Perth, Australia ²Kings Park Science, Botanic Gardens and Parks Authority, Department of Biodiversity, Conservation, and Attractions, Perth, Australia

Seedballs to the wall: confronting restoration challenges on arid lands

Elise Gornish¹ and DJ Eastburn² ¹University of Arizona, Tucson, AZ, USA ²University of California-Davis, Davis, CA, USA

Break

Pucks: Engineering biophysical solutions for aerial seeding in conifer and native plant systems after disturbance

Matthew Aghai¹ and Tiffani Manteuffel-Ross¹ ¹DroneSeed, Seattle, WA, USA

Improving sagebrush establishment with root enhancing seed technologies Magdalena Eshleman¹, Chris Donovan¹, Corinna Riginos¹ ¹The Nature Conservancy, Lander, WY, USA

From pasta to pellets: challenges and lessons learned from scaling up production of a promising seed technology

Jessica Griffen¹, Roxanne Rios², Owen Baughman¹ ¹The Nature Conservancy, Burns, OR, USA ²US Department of Agriculture, Agricultural Research Service, Burns, OR, USA ³The Nature Conservancy, Baker City, OR, USA

Discussion and Q&A

Day 4 | Seed handling and deployment

Introduction and webinar recap

Olga Kildisheva¹ ¹The Nature Conservancy, Bend, OR, USA

Creating seed mixes at the community level: seed source can explain as much performance variability as species

Alison C. Agneray¹, Matthew L. Forister¹, Thomas L. Parchman¹, Elizabeth A. Leger¹ ¹University of Nevada Reno, USA

Sourcing and maintaining high quality seed reserves for ecological restoration

David Merritt^{1,2}, Emma Dalziell¹, Todd Erickson^{1,2} ¹Kings Park Science, Botanic Gardens and Parks Authority, Department of Biodiversity, Conservation, and Attractions, Perth, Australia ²The University of Western Australia, Perth, Australia

Seed traits can influence ant predation rates Trace E Martyn¹ ¹University of Arizona, Tucson, AZ, USA

Break

Engineering restoration for the future

Monte Masarei^{1,2}, Todd. E Erickson^{1,2}, David J Merritt^{1,2}, Andrew L Guzzomi¹ ¹The University of Western Australia, Perth, Australia ²Kings Park Science, Botanic Gardens and Parks Authority, Department of Biodiversity, Conservation, and Attractions, Perth, Australia

DroneSeed: Scalable solutions for rapid response survey and precision seeding in postdisturbance environments

Matthew Aghai¹ ¹DroneSeed, Seattle, WA, USA Low-tech equipment for arid land seeding Tony Svejcar¹ ¹Oregon State University, Burs, OR, USA

Discussion and Q&A

Day 5 | Building partnerships to solve complex restoration problems & Webinar series next steps

Introduction and webinar recap

Olga Kildisheva¹ ¹The Nature Conservancy, Bend, OR, USA

The journey of Kings Park Science and its partners in developing restoration solutions in Western Australia

Jason Stevens^{1,2} ¹The University of Western Australia, Perth, Australia ²Kings Park Science, Botanic Gardens and Parks Authority, Department of Biodiversity, Conservation, and Attractions, Perth, Australia

Stakeholder engagement for rangeland restoration: the Nevada Native Seed Partnership

Liz Munn¹, Sarah Kulpa², Meghan Brown³, Brittany Trimble⁴ ¹The Nature Conservancy, Reno, NV, USA ²US Fish and Wildlife Service, Reno, NV, USA ³Nevada Department of Agriculture, Elko, NV, USA ⁴Nevada Department of Wildlife, Spring Creek, NV, USA

Solving complex restoration problems: TNC's Sagebrush Sea Program Matthew Cahill¹

¹The Nature Conservancy, Bend, OR, USA

Interactive group discussion: webinar synthesis and next steps

Closing remarks