Effects of shrub encroachment and shrub removal on South Texas coastal prairies

by

Parker Alex Watson¹, Heather D. Alexander², Jonathan Moczygemba³

¹The University of Texas Rio Grande Valley, ²Mississippi State University ³U.S. Fish & Wildlife Service

November 14, 2015

Acknowledgements

Project volunteers

Krysten Dick, Eric Verderber, Aaron White, Jennifer Vela, Ali Shepherd, Roxann Lerma, Scott Affeldt, Christina Straway, Jordan McMahon

Institutions

U.S. Fish & Wildlife Service, Laguna Atascosa Wildlife Refuge, Robert J. Kleberg, Jr. and Helen C. Kleberg Foundation,
University of Texas Rio Grande Valley

Gulf coastal prairies

- Found along the western Gulf coast of the U.S.
- Once covering 3.8 million ha, now <0.1% remains due to increased urbanization and agriculture (Smeins et al., 1991; United States Geological Survey-National Wetlands Research Center, 2015)
- Provide habitat, biodiversity, regulate erosion, hydrology, nutrient cycling, and opportunities for tourism and education

Hypotheses

- 1. Characterize effects of shrub canopy cover on understory grass cover and microclimate
 - Understory light, soil and air temperature decrease with increasing canopy cover
- 2. Assess the effects of 4 different combinations of mechanical, herbicide and prescribed fire shrub removal treatments and degree of shrub encroachment prior to removal on coastal prairie flora regeneration and growth
 - Patches with less shrub encroachment (small) and subsequently treated with <u>mechanical</u>, <u>fire</u> and <u>herbicide</u> have the greatest abundance of Gulf cordgrass and least abundance of mesquite & huisache

Study area

Experimental design

- = Medium shrub cluster (5 – 7 m diameter)
- = Large shrub cluster (10 – 12 m diameter)
- = Control in grass

Understory soil temperatures

- Large clusters had significantly cooler mean temperatures in Summer 2015 compared to controls in Summer 2014 (p< 0.001) and Summer 2015 (p< 0.001)
- Large clusters had significantly cooler maximum temps in Spring 2014 (P < 0.001) and Summer 2015 (P < 0.001) than controls in the same seasons

Understory air temperatures

 Large clusters had significantly cooler maximum air temps than controls in all corresponding seasons (p< 0.001)

Understory lux

 Large clusters had significantly less mean (p< 0.001) and maximum (p< 0.001) lux than controls in all corresponding seasons

Hypotheses

- 1. Characterize effects of shrub canopy cover on understory grass cover and microclimate
 - Gulf cordgrass cover decreases as shrub canopy cover increases
 - Understory light, soil and air temperature decrease with increasing canopy cover
- 2. Assess the effects of 4 different combinations of mechanical, herbicide and prescribed fire shrub removal treatments and degree of shrub encroachment prior to removal on coastal prairie flora regeneration and growth
 - Patches with less shrub encroachment (small) and subsequently treated with <u>mechanical</u>, <u>fire</u> and <u>herbicide</u> have the fastest recovery rates, greatest abundance of Gulf cordgrass and least abundance of mesquite & huisache

Experimental design

- 4 shrub removal treatments
 - Mechanical
 - Mechanical + herbicide
 - Mechanical + fire
 - Mechancial + fire + herbicide
- Small, medium and large bare patches identified in each treatment
 - Small (< 4 m diameter)
 - Medium (4.1 7.9 m)
 - Large (> 8 m)
- "Gap-makers" < 2 cm measured in each patch

Experimental design

Gap-makers

Gulf cordgrass abundance

- **Small** patches had more cordgrass than medium (p= 0.009) and large (p< 0.001)
- MF and MFH had significantly greater abundance of cordgrass than
 M (p< 0.001) and MH (p< 0.001)
- Fire treatments had approximately 100% cordgrass abundance after 16 mos.
- MH as low as 50% and M as low as 66%

Mesquite & huisache abundance

Summer 2015

- MH significantly less than M (p= 0.01)
 and MF (p< 0.001)
- MFH significantly less than MF (p= 0.03)
- MH is 0%
- **MFH** is < 7%
- M as high as 35%

Woody debris substrate

Spring 2014

- Fire treatments significantly less than
 M (p< 0.001) and MH (MF p= 0.02;
 MFH p= 0.01)
- Fire treatments had at most 26% (large MF)
- Non-fire treatments had at most 84% (large MH)

Management implications

• All three treatments applied early in encroachment with specific sequence of:

Mechanical \rightarrow Fire \rightarrow Herbicide

- 1. Minimizes effects of pre-existing shrubs on Gulf cordgrass
- 2. Greatest abundance of Gulf cordgrass
- 3. Less mesquite and huisache
- While this strategy has the most expensive overhead, the long-term ecological results outweigh initial economic costs (Verderber 2015)

