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Abstract: Remote sensing has innovated and reshaped many traditional forestry investigation methods. 

Light detection and ranging (LiDAR) and high resolution imagery has been combined and utilized to 

extract many forest inventory data. Height bins (voxel) method to extract height points information 

within different height range from LiDAR point cloud is a promising tool for tree species identification. 

We utilized canopy density for every cell within different height bins and general height statistic 

parameters from LiDAR and National Agricultural Imagery Program (NAIP) imagery to differentiate pine 

and deciduous in a mixed forest in southeastern U.S.. The Principal Component Analysis (PCA) method 

was utilized to find the correlation among these bands, and then decision tree method was applied to 

do classification based on PCA bands. The PCA result shows no significant correlation between these 

bands, and the first Principal Component (PC) and first 5 PCs accounted for about 50% and 80% of the 

total variance, so the classification accuracy based on these PCs is relatively satisfactory. The 

differentiation between pine and deciduous, however, was weakened by sparse distribution of 

deciduous and loose correlation between the original bands, but this less correlation could prompt more 

advanced choice of LiDAR and spectral information to differentiate pine and deciduous based on further 

physical investigation. So there is merit in including variables within height-bins for tree species 

classification. 

 

 

 



1. Introduction: 
The obtaining of reliable and precise forest inventory information has been always fundamental and 

crucial for forest resources assessment and management, but was historically rather expensive, labor 

consuming and lasted very long time due to aerial photo interpretation, field investigation, and scaling 

problems from forest plot result to landscape. Many traditional studies on tree classification are carried 

out by human visual interpretation using aerial photos. The use of remote sensing could not only 

provide several traditional attributes of forest  inventory, but also provide information that not currently 

part of an existing forest inventory, such as Leaf Area Index (LAI). The core of current remote sensing 

application in forest inventory is to apply an empirical classification or estimation technique, including 

establishing an empirical relationship between spectral measurements and field estimates of species or 

canopy density[1].   

Tree species identification constitutes a bottleneck in remote sensing-based forest inventory, due to 

overlap and bidirectional reflectance during differentiating features [2]. The introduction of airborne 

LiDAR was a breakthrough, since it permits accurate three-dimensional (3D) probing of the vegetation 

and terrain, which cannot be done reliably in passive RS data [2]. As such, different species of trees will 

reflect LiDAR pulses differently, so the individual crown shapes allows for identification of predominant 

tree species. LiDAR return intensity, which has not been as heavily explored for its usefulness in forestry 

due to the difficulty in radiometric calibration, could merit feature extraction on imagery[3]. The use of 

LiDAR height and intensity data to classify land cover via an object-oriented approach could result 

an accurate land cover maps with accuracies ranging from 94% to 98% [4]. Examination on the 

distribution of the laser points within the contour of a single tree could distinguish different species of 

tree. Figure1 shows sample point distributions from three different tree species, so by analyzing the 

number of variables within the point distributions can identify the tree individual tree species.[5] 

Species tree height and NDVI have shown to be the two most important LiDAR derived parameters for 

classification of savanna tree species[6]. A proposed method was to capture the geometrical difference 

between deciduous and coniferous tree by looking the geometrical properties of the crown shape 

(spherical, conical or cylindrical) based on LiDAR point cloud, and derived the internal structures (bole 

and branches) of the LiDAR tree further [7]. 

LiDAR and high resolution aerial photography have been investigated as means to extract forest data, 

such as biomass, timber volume, and stand dynamics. Data fusion with multispectral optical data and 

local filtering with variable window size was used to estimate tree height, and the integration with co-

registered multi- and hyper-spectral digital imagery makes LiDAR a realistic precision forestry alternative 

to traditional measurement in forest inventory, and the fusion of LiDAR and image could bring dramatic 

gains in characterizing the 3D structure of the forest canopy[8]. A novel calibration technique for 

estimating individual tree heights with a more reliable prediction based on shape characteristics of a 

marginal height distribution of the whole first-return point cloud of each tree showed a reduction of the 

RMSE of the tree heights of about 20%, so improved the species classification accuracy markedly under 

leaf-off and leaf-on conditions[9]. A parcel-based unsupervised classification approach was employed 

with the first two Principal Components from 12 selected wavebands of HyMap data and a Digital 

Canopy Height Model extracted from LiDAR data, and the resultant thematic classes contain information 



on species composition and structure, thus an ecologically meaningful thematic product for complex 

woodland environment[10]. A voxel-based LiDAR method for estimating crown base height for 

deciduous and pine trees was carried out in southeastern United States, which illustrates that height 

bins, generating images of the vertical structure of forest vegetation, are an innovative LiDAR-derived 

product that has the potential to become a standardized imagery product for LiDAR applications in 

ecosystem studies [11]. The intensity and the pulse width derived from small-footprint full waveform 

are used to detect coniferous and deciduous trees by an unsupervised classification, and an overall 

accuracy of 85% in a leaf-on situation and 96% in a leaf-off situation.[12] 

 

Figure 1: sample LiDAR point distributions for different tree species [5] 

 

The objective of this study was to differentiate and classify the pine and deciduous with combined 

multispectral images and LiDAR-derived voxel-based images of canopy structure, including canopy 

density and height statistical indexes in a mixed pine-deciduous forest in southeastern United States. 

We hypothesized that the canopy density information and height statistical parameters available in 

LiDAR-derived data, combined with vegetation spectral and textual information, could be utilized to 

differentiate pine and deciduous part of forest. Of interest was four specific aspects listed below:  

• To examine LiDAR-derived canopy parameters for pine and deciduous in Huntsville 

• To develop a frame to fuse LiDAR data with multispectral imagery for tree classification 

• To develop classification parameters and method for mixed pine-hardwood forest 

• To examine the capabilities of LiDAR data in combination with multispectral imagery to 

distinguish pines from hardwoods 

 

 



2.  Material and Methods 

2.1 study area 

This study area is located near Huntsville, East Texas, Southern United States(Fig.2), with a rectangular 

region defined by 95°24'57"W-30°39'36"N and 95°21'33"W-30°44'12"N. According to the Vegetation 

Types of Texas (1984), the vegetation type of the study area is Pine-Hardwood Forest.[13] The study 

area consists of Loblolly pine (Pinus taeda L.) in various developmental stages, including young, mature, 

and withered or dead Loblolly pine stands (red tone in fig.2) in the Sam Houston National Forest, and 

upland and bottomland hardwoods are comprised by Water Oak (Quercus nigra L.), Southern Red Oak 

(Quercus falcata Michx.), White Oak (Quercus alba L.), Sweetgum (Liquidambar styraciflua L.) and 

Winged Elm (Ulmus alata Michx.). Loblolly is widely planted in this region due to its economic value, 

while deciduous trees are also widely distributed, especially in several valleys. The topographic 

characteristic of the study area is gentle slopes with elevation fluctuating between 62 to 105 m. 

 

Fig.2 Study area located in Huntsville, TX. shown as a true color composite of national 

agricultural imagery program (NAIP)  

(*)StratMap County Boundaries from TNRIS      

(**) the study area NAIP image shown in true color composite (Red for band 1, green for band 2, and blue for band 3) 

2.2 Data 

2.2.1 Airborne LiDAR 

Discrete return LiDAR data were acquired in early November 2010 by Terrapoint Inc. (acquired by         

GeoDigital Inc. in June, 2011), with 506,502,099 point records, and the number of points by return was 



374 204 482, 112 766 004, 18 324 897, 1 177 768, and 28 692 from first return to the 6
th

 return, 

respectively. The projection system is GT-Model-Type-Geo-Key UTM15-Northern hemisphere, and the 

unit system is linear meter. The scanning angle range for this LiDAR Dataset is ±29°. The point file was 

provided without classification.  

2.2.2 Multispectral imagery 

This dataset included four National Agriculture Imagery Program (NAIP) orthophotos (Fig.1) from the 

Digital Ortho Quadrangle (DOQQ ) Datasets of Texas Natural Resources Information System (TNRIS), 

which were acquired in May of 2010, the same year with LiDAR acquisition year. These NAIP images 

have a 1 m spatial resolution with four spectral bans, namely, Red (604-664 nm), green (533-587 nm), 

blue (420-492 nm) and Near-infrared(NIR) band (833-920 nm). 

2.3 Data processing 

The processing of LiDAR and NAIP images consist of several steps. For initial LiDAR data, classification on 

canopy and ground was made and the Canopy Height Model (CHM) was derived, and then to extract 

canopy density and height distribution information for different height bins form CHM with 2 m 

resolution. The Normalized Difference Vegetation Index (NDVI) and Texture information from NAIP 

images were also extracted by band math tool of ENVI (Version: 5.0.3, Exelis Visual Information 

Solutions, Inc.), and then resized to same 2 m to LiDAR-derived raster file.  And then stacked all these 

bands derived from LiDAR and NAIP together with to obtain uncorrelated principal components (PCs) 

and the different weights the original bands carries in the overall variability though Principle Component 

Analysis (PCA),  and lastly decision tree (DT) classification method and support vector machine (SVM) 

were applied to do classification, with assist of further Principal Component Analysis (PCA) for 

representative pine-hardwood sub-region to extract particular information to differentiate pine and 

deciduous. The overall flow chart is shown in Fig.3. 



   

                                              Fig.3 Flow chart of the overall pine-deciduous tree classification 

 



2.3.1 Canopy Height Model (CHM) mining from LiDAR data 

A digital terrain model (DTM) was generated by inferring the last return (i.e. 6
th

) LiDAR point elevation 

from vegetation and returns from bare soil with 5 m spatial resolution using the AGL analysis by QTM 

(V7.1.5, Applied Imagery Inc.), and then smoothed further by noise removal. As such, the CHM was 

generated by subtracting the resampled DEM from original point cloud to generate AGL (above ground 

level) at a resolution of 5 m via subtract tool of Quick Terrain Modeler. The resultant AGL point cloud, 

which symbolizes a three-dimensional point clouds characterizing above ground height, especially trees, 

across the landscape within the study area, is available for following canopy analysis. 

2.3.2 Canopy structure information derived from AGL point cloud 

Forest canopy density and height are two essential variables in a number of environmental applications, 

including the estimation of biomass[14], canopy fuel[15], and biodiversity[16]. Accordingly, two main 

aspects of canopy structure information were obtained from AGL, which were canopy density within 

each cell of different height bins and statistical index of the canopy height distribution. Relative density 

raster files were computed by ‘Lascanopy’ tool of Lastools (rapidlasso GmbH Inc.) which divided height 

count in every cell of each height bin by the total number of points and scaled to a percentage. 2 m was 

chose for the ‘step’ or spatial resolution with consideration of the point density for every gridded unit 

area. 10% buffer boundary was applied during this process to confirm analysis accuracy. According to 

the distribution of height points and previous studies the height bins consisted of 11 different intervals, 

as shown in Tab.1 and Fig.4. 

Tab. 1 Height-bins information 

height-bins  Elevation range (m) 

Bin 1 0.0-0.5 

Bin 2 0.5-1.0 

Bin 3 1.0-1.5 

Bin 4 1.5-2.0 

Bin 5 2.0-5.0 

Bin 6 5.0-10.0 

Bin 7 10.0-15.0 

Bin 8 15.0-20.0 

Bin 9 20.0-25.0 

Bin 10 25.0-30.0 

Bin 11 30.0-70.0 

 

Meanwhile, several common statistical values, such as minimum, maximum, average, and standard 

deviation of all height above the ground (‘-height_cut_off 0.0’) were also computed by ‘Lascanopy’ tool 

of Lastools. Due to different characteristics of point height distribution near the ground surface of 

different trees (Fig.1), the height cutoff was rearranged from default breast height (1.37m) to ground 

surface 0.0 m, so all points were computed for these four height parameters. Meanwhile, since the 

height bin model is more easily interpreted than the height percentile model[17], so some other height 



percentiles were not computed rather. The CHM is relatively much more important since it carries 

canopy height information, which is an important parameter for tree classification[18]. Those four 

output raster file are shown in Fig.5. 

 

Fig. 4 height bins and its output density raster files 

 

Fig.5 percentile images 

2.3.3 NAIP image processing 

Four NAIP images from TNRIS were mosaicked together geo-referentially in the beginning. An inspection 

of a few noticeable feature points were checked to confirm the well geographically registry to LiDAR 

derived raster files. These NAIP images were used to extract thematic information to distinguish 

different land cover types in this study, including forest (pines and deciduous), grassland, urban/bare 

soil, water, etc. A visual interpretation on these NAIP images, especially with a false color composite, 

showed relatively significant spectral difference among these different land covers. 



The mosaicked NAIP images was resized with spatial resolution and extent according to raster files from 

AGL file mentioned above, and then used for computation of normalized difference vegetation index 

(NDVI) and texture based on its different four bands, namely red, green, blue, and NIR. NDVI carries 

vegetation information[19]. The image texture information is a quantification of the spatial variation of 

image tone that linked to changes in the spatial distribution of forest vegetation in both vertical and 

horizontal dimensions[20].  

Co-occurrence-based texture filters was applied to the NAIP image to derive variation in brightness in 

those four bands, and four options were chosen in this study, which is variance, homogeneity, contrast, 

and entropy. As a result, 16 raster images were available after these four parameters[21] were 

computed for four bands. 

• Variance: The local variance of the processing window. This value is based on the Greyscale 

Quantization Level that you specify. 

        
• Homogeneity: ENVI computes homogeneity using the "inverse difference moment" equation. 

Values range from 0 to 1.0. 

        
• Contrast: ENVI computes contrast using the following equation: 

        
• Entropy: ENVI computes entropy using the following equation. Values range from 0 to 

the alog of the processing window size. 

         
        Where p(i,j) is the spatial co-occurrence matrix element. 

 

2.3.4 Stacking layers derived from LiDAR and NAIP  

With ENVI 5.0.3 (Exelis Visual Information Solutions, Inc.), a new multiband image with 2.0 meter 

spatial resolution was stacked based on 11 bands of canopy density image extracted from LiDAR 

derived CHM, 4 original bands, 1 NDVI band, and 16 bands of texture information resample and 

derived from NAIP, as is shown in Fig. 6, and will be subsequently referred as the LiDAR-NAIP stack. 

The first 11 bands were LiDAR derived height bins, and 12
th

-15
th

 bands consisted of original NAIP 

bands, and then NDVI was added as 16
th

 band, and 4 statistical bands were ranging from 17
th

 to 20
th

 

band, and then 16 texture bands were added further to 36
th

 band. We included all these bands to 



convey as much information carried by LiDAR and NAIP image as possible to find which combination 

of bands implies most majority information of variety behind this stack image.  

 
Fig.6 the LiDAR-NAIP stack image 

2.3.5 Principal Component Analysis (PCA) 

A. first PCA:  

PCA was applied to the LiDAR-NAIP stack image consisting of 36 bands, and then the first 10 of the 

output PCs is shown in Tab.2. The first principal component only accounts for only 34.27% of 

variance in the entire LiDAR and multispectral data, and the first 5 PCs comprise just approximately 

80% of the total variance, and only the first 10 PCs can explain more than 90% variance, so it could 

be concluded that the correlation between LiDAR-derived canopy density and NAIP derived texture 

bands are much uncorrelated and their relation is not so strong, 

 

     
(a) eigenvalue percent of the first 10 PCs                   (b) cumulative percent of the first 10 PCs 

        Tab.2 the eigenvalue percent for first 10 PCs of the first PCA analysis 



Upon further examination on the relationship between the PCs and original Bands, as shown in Tab.3,  

several significant uncorrelated bands could be detected by its correlation ratio with PCs. Band 4 

(height-bin 1.5-2 m) is most strongly correlate with PC1 negatively, and generally the band 2,3,9, 14, 

17, and 24 illustrated more strongly correlated with the first 3 PCs. And the first five PC images is 

shown in fig.7.  

                           Tab. 3 the correlation between first 3 PCs and original bands 

Eigenvector    PC 1    PC 2    PC 3 Note 

     Band 1 0.032897 0.00816 0.00287 

      Band 2 -0.39901 -0.00567 -0.00236 height_bin 0.5_1m 

     Band 3 -0.3084 0.003389 -0.0072 height_bin 1_1.5m 

     Band 4 -0.6521 0.009803 -0.00422 height_bin 1.5_2m 

     Band 5 -0.09228 0.013354 0.012404 

      Band 6 0.072979 -0.02188 -0.01957 

      Band 7 -0.10273 0.024693 0.017078 

      Band 8 -0.05961 0.01123 -0.00359 

      Band 9 -0.33208 0.065159 -0.00529 height_bin 20_25m 

    Band 10 0.085635 -0.02956 -0.02894 

     Band 11 -0.17239 0.159612 0.103063 

     Band 12 -0.02399 0.023671 0.001208 

     Band 13 -0.02581 0.0454 0.004732 

     Band 14 0.138317 -0.79483 -0.19676 naip_blue 

    Band 15 0.014123 0.059887 -0.01011 

     Band 16 0.056428 0.20749 -0.18558 

     Band 17 -0.12519 -0.40217 0.598278 height_avg 

    Band 18 -0.06401 -0.14427 0.229266 

     Band 19 -0.05951 -0.06155 -0.19935 

     Band 20 0.107837 0.096266 0.356074 

     Band 21 -0.01801 -0.00735 -0.46973 

     Band 22 -0.03717 -0.04007 0.135989 

     Band 23 0.006277 0.002547 0.004881 

     Band 24 -0.21502 -0.2164 -0.22301 entropy_red 

 

 
Fig.7 first five PC images 



B. feature separateness within PCs 

Region of Interest (ROIs) for every land cover were collected with reference to NAIP image (with False 

color composite) and Google Earth display across its entire range, as is shown in Fig.8. And ‘stats’ tool 

was run for every type of ROI to check its separateness for first 5 PCs, and the result (Tab.4) shows the  

mean and standard deviation (std) for digital number (DN)’s distribution of every land cover in each 

PCs. 

 
Fig.8 Region of Interest (ROI) is shown in Study Image 

 

In this project, we roughly define the distribution range of DN for each Land cover as the mean ± std to 

include 68% of the DN values assuming that the DN distribution is normal. So from Tab.4, we can 

conclude that the first five bands cannot differentiate pine-hardwood very well, although other types 

of land cover could be distinguished relatively well via these PCs of the first PCA analysis, so a subset 

representative region of pine-hardwood forest was chosen for second PCA analysis. 

 



Tab.4  Separateness check for every land cover in first 5 PCs of the first PCA 

 

 

 

 

 

 

Tab5.  Separateness check for pine and deciduous in first 5 PCs of the 2
nd

 PCA 

 

PCs 

Decideous   Pine 

      Mean     Stdev   

      

Mean 

    

Stdev 

PC1 -23.20 59.58 

 

28.81 29.76 

PC2 11.93 39.28 

 

-13.93 21.15 

PC3 -3.58 23.41 

 

19.49 19.21 

PC4 5.58 20.74 

 

4.95 14.69 

PC5 3.81 21.97   -4.81 10.69 

 

 

 

 

 

 

 

PCs 
PC1   PC2   PC3   PC4   PC5 

mean std   mean std   mean std   mean std   mean std 

water -82.65 4.52 

 

1.85 33.77 

 

38.62 20.82 

 

-51.08 28.78 

 

8.29 6.94 

urban/bare_soil -14.75 115.69 

 

-143.45 41.65 

 

-33.36 66.30 

 

-12.72 34.58 

 

-10.31 10.22 

pine -19.18 34.79 

 

15.10 22.29 

 

13.01 19.16 

 

3.55 21.36 

 

-7.54 31.78 

grassland -32.75 45.73 

 

-59.42 36.52 

 

-36.26 15.47 

 

-11.86 21.47 

 

1.77 6.20 

deciduous 12.53 54.33   16.94 35.49   -14.07 27.91   22.29 30.75   -0.53 21.27 



C. Second PCA for a subset representative image with Pine-Hardwood 

The second PCA applied exclusively for a subset region with only two types of trees, pine and 

deciduous to check its separateness by the LiDAR- and NAIP- derived images. The subset region and 

its ROIs are shown in Fig.9, and its eigenvalues and its percentage of total variance are shown in 

Tab.6, and the first 5 PCs image are shown in Fig.10. The first PC still counts for only 42% of the total 

variance, and first 5 PCs just stand for approximately 80% of the total variance, which means no 

significant correlation exists among the canopy density and height statistical index and texture 

information derived from NAIP. Meanwhile, this 2
nd

 PCA result are relatively similar to the 1
st

 PCA. 

 
                              Fig.9  Subset representative image and its ROIs for 2

nd
 PCA 

 

                             Tab.6 Eigenvalues, and (cumulative) percentage of total variance 

  PCs  Eigenvalue % of Total Variance Cumulative 

PC1 2893.110507 42.07491555 42.0749156 

PC2 1194.30672 17.36897165 59.4438872 

PC3 743.117434 10.80726201 70.2511492 

PC4 430.000532 6.253558593 76.5047078 

PC5 341.452213 4.965787858 81.4704957 

 

 
Fig.10 First Five PC images for 2

nd
 PCA 



2.3.6 Stacking the first PCA bands with the PC1 band of the second PCA output 

With combination of the two PCA analyses, the PC1 of the second PCA was stacked to the first PCA 

result to differentiate pine and hardwoods. This stacked layer will be referred subsequently as the 

composite PCA image with 37 bands since the 36 PCs from the 1
st 

PCA result didn’t removed. The 1
st 

PC’s linear relation with the original bands was extracted and computed with the same linear 

formula for the entire range with ‘band math’ tool, and then stacked to the first PCA resultant bands.  

 

2.3.7 Classification_decision tree classification 

 

 
Fig.11 decision tree classification based on two PCA bands 

 

As mentioned above, we assume the DN distribution for every ROI is same across the image, and 

then decision tree was used to classify different land cover based on its DN range defined as Mean± 

Std, so the Water range was -82.65±4.52 in PC1, Urban range was -143.45±41.65, and Grassland 

classified was -59.42±36.52. So relatively all these three land cover could separate by this range for 

different PCs. But the Pine and hardwood still could not differentiate completely by Mean± Std in the 

1
st

 PC of the 2
nd

 PCA, so we divided them at the middle point between their Mean values in PC1, 

namely (-23.2+28.81)/2=2.8. The detail step of decision tree is shown in Fig.11. The thematic map 

from decision tree classification is shown in Fig.12. The classification accuracy was assessed by 

testing data collected based on visual interpretation on NAIP image and Google Earth display.  



  
Fig. 12 Classification of decision tree 

 

3. Results and discussion 

3.1 PCA result 

For the two PCA results, no strong correlation existed among these height bins, height statistic index, 

NAIP bands, and the texture information, because the first PC only accounts less than 50% of the 

total variance, and the height bins are more related to 1
st

 PC for two PCA analysis, although a little 

difference existed for weights carried by height bins between two PCAs. The relation between PCs 

and original band is shown in Tab.7. 

 

 

 

 

 

 

 

 



Tab.7 the relationship between PCs and original bands for 2
nd 

PCA 

Eigenvector    PC 1    PC 2    PC 3  note 

     Band 1 0.022607 0.006655 0.005433 

      Band 2 0.027878 0.003202 0.000976 

      Band 3 0.116155 0.006886 0.00647 height_bins_1_1.5m 

     Band 4 0.228929 0.00707 0.00508 height_bins_1.5_2m 

     Band 5 0.317313 0.011828 0.002739 height_bins_2_5m 

     Band 6 0.719801 0.025131 0.005325 height_bins_5_10m 

The uncorrelated bands have different weights for PCs, the height-bins are much more strongly 

related to the 1
st 

PC for two PCA result. Band 4, height-bin 1.5-2.0 m is the top significant band for 1
st 

PCA result, while the third significant in 2
nd

 PCA, so the influence from grassland and bare soil might 

been deteriorate the un-correlation between these bands, and the height-bins near the surface 

exhibited no big contribution to the PCs maybe due to its high homogeneity across the entire range, 

or due to point data of grassland or shrub. So the near ground surface height bin could not 

differentiate pine and deciduous very well. On the contrast, the height bins ranging from 0.5-10 m 

contributed major uncorrelation to these bands. Among NAIP bands, blue band was much more 

significant related with PC1 for 1
st

 PCA result than other bands, the reason of which is unknown and 

needed to be further investigated. And among height statistic index, the average is much 

pronounced than the Maximum (CHM), so we may concluded that the maximum height of pine and 

deciduous are less different than the average height between them. For the texture bands, they may 

generally correlate with each other, and neither contributed to PCs significantly, except the limited 

contribution by entropy of red band. 

3.2 Decision tree classification accuracy assessment 

 

The classification based on the assumption of mean ± std range shows an overall accuracy of 71.4% 

(Khat=0.60), the thematic map result is relatively satisfied due to the loose division assumption and 

small percentage of eigenvalue for these three PCs used for classification.  The confusion matrix (%) 

for accuracy assessment is show in Tab.8, and the producer’s and user’s accuracy is listed in Tab.9. 

 

              Tab.8 confusion matrix for classification 

    Class            
 Ground Truth (%)   

water urban grassland pine deciduous 

water 73.12 0 0 0.19 0 

urban 0.54 77.63 1.91 0 0 

grassland 22.58 4.61 90.45 4.12 12.44 

pine 3.76 17.11 3.18 85.96 69.78 

deciduous 0 0.66 4.46 9.74 17.78 

total 100 100 100 100 100 

 

 

 

 

 

 

 



                               Tab.9 producer’s and user’s accuracy 

class Prod.Acc User. Acc 

water 73.12 99.27 

urban 77.63 96.72 

grassland 90.45 58.92 

pine 85.96 70.18 

deciduous 17.78 40 

 

Based on visual inspection on the thematic map result in Fig.12, several observations could be made 

upon regarding the products. firstly, the separation between pine and deciduous isn’t so satisfied 

enough, and 69.78% of deciduous reference points were classified as pine, so the producer’s 

accuracy is only 17.78%, and user’s accuracy is resultantly only 40% for deciduous. A significant 

misclassification for deciduous trees happened in an up north region with relatively sparse deciduous 

trees distribution, which was almost classified as pines. With dense deciduous trees distributed in 

lower valley region in southern part, the classification region was dramatically shrunk to narrow 

strips compared to reference data. This poor separation between deciduous and coniferous may be a 

result of intensity at different height bins, overall height distribution, and spatial texture 

heterogeneity. The producer’s accuracy for pine is 85.96%, which is a very satisfactory number, and it 

means 85.96% of possibility that an “pine” on the ground was identified as a “pine” region on the 

classified image, so we can concluded that the pine’s distribution range on the 1
st

 PC of the second 

PCA is much convoluted than normal distribution, while the deciduous tree’s counterpart 

distribution would be much loose due to its density range, so the misclassification is much more 

larger. Secondly, a problem associated with image classification at this spatial scale is shadowing of 

canopy, and we observed that tree shadows were often classified as water bodies, potentially 

overestimating the water range extent, or an independent class of shadow would be used in 

classification process. Thirdly, the classification between grassland and water was poor, might due to 

its small range of height points near ground surface, so their difference between different heights 

bins above 0.5 meters are very difficult to detect. And the height bins near the ground surface 

cannot differentiate the pine and deciduous very well, or even for all land covers in this project.  

4. Conclusions 
Although there was not significant increase in map accuracy when LiDAR-derived variables, such as 

canopy density for height bins and overall height statistic indexes, were considered and fusion with 

NAIP images and its texture information, there was merit in including these data to investigate their 

correlation between them via PCA. The canopy density ranging from 0.5 to 2.0 m accounts for most 

un-correlation between all these bands, which could be further used for pine-deciduous separation 

in mixed forest. The average index of canopy distribution is much more strongly related with PCs 

than CHM, which is slightly different with earlier findings[22]. The texture information and NDVI 

were not contributed much to the total variation, and could not differentiate pine and deciduous 

very well based on them. Since the first PCs or first 5 PCs accounts for a small part if the total 

variation, so PCA analysis isn’t applied in this situation, so the tree decision tree classification based 

on loose assumption didn’t provide a very satisfactory result for the classification result. The 

thematic result map for land cover failed to differentiate pine and deciduous very efficient due to the 

loose assumption and the wide range of variance for pine and deciduous. It should be noted that the 

result of this analysis only applies for this particular combination band of height bins, height statistic 

index, NAIP, and texture information from it. We simply compared initial outputs using these 



variable data inputs, so it may still be possible to increase thematic map accuracy by implementing 

other classification methods rather than PCA, or even possible to improve decision tree approached 

based on PCA. 

 

Future research should attempt thematic map creation from LiDAR intensity data and other derived 

information from high resolution imagery using stacked layers extracted from them. Meanwhile, the 

inclusion of LiDAR parameters and image, including height bins and texture information, should be 

explored for their usefulness individually and based on field survey before stacking them together to 

do analysis. The LiDAR data and image should be collected in same season, hopefully in leaf-off time 

to maximize the difference of canopy structure between pine and deciduous. Although this work 

support the importance of height bins in differentiate the pine and deciduous, high resolution 

imagery would still wanted to help increase thematic map accuracy. Other classification approaches 

should also be explored to examine their usefulness in differentiation of pine and deciduous. 
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