Edge Effects on Diatom Community Succession Trajectory within a Mitigation Wetland

Dr. Bradley Hoge
University of Houston - Downtown
• Blanca Hinojosa inspired the current study

• Blanca and Leah Mulkey have been team leaders

• Leah is also presenting her poster at this conference
 - Diatom Anomaly at the Green Bayou Wetlands Mitigation Bank.
• Greens Bayou Wetland Mitigation Bank (GBWMB) Study

• Succession trajectory

• Disturbances
 • Hurricane Ike
 • Recent drought
 • Changes in land use

• Current Study
 • Edge effects
 • Ecological modeling

Background
GBWMB Study
Study Area
- Greens Bayou Wetland Mitigation Bank
- Little Cypress Creek mitigation project
- White Oak Bayou mitigation project
- Sheldon Lake
- Carpenter’s Bayou
- San Jacinto River
- Anahuac National Wildlife Refuge
 - Shoveler Pond
 - Big Marsh
 - Marsh Pond
 - East Bay
 - Smith Point
- Trinity River
 - Trinity River swamp
 - Fort Anahuac
- Other bayous and streams
 - Armand Bayou
 - Brays Bayou
 - Buffalo Bayou
 - Cypress Creek
 - Spring Creek
Ecological Edge Effects
Hurricane Ike
Drought
Construction
Modeling
Expected Trends

- Local flooding by rivers and streams
- Diversion of water by construction projects
- Long-range transport by storms
- Environmental homogeneity/heterogeneity
- Biogeochemistry
Future Work

• Complete survey of Trinity River watershed

• Compare mitigation areas to past projects and natural waterways

• Model edge effects using Hubbell’s model

• Analyze trends in succession trajectory for mitigation wetlands

• Provide model for future mitigation project success