Spatial and temporal patterns of vegetation treatments in the Southwest: variability and trends with implications for restoration success

November 9th, 2016

Stella Copeland (NAU), John Bradford (USGS), Brad Butterfield (NAU), Seth Munson (USGS), David Pilliod (USGS), Justin Welty (USGS)

Restoration Assessment & Monitoring Program for the Southwest (RAMPS)
Major Restoration Goals
• Restore ecosystem function and biodiversity
• Promote resilience to disturbance

Challenges
• Profound effects of land-use on ecosystem processes
• Severe and frequent fire
• Invasive species
• Climate change drying and variability → high probability of restoration failure?

What conditions and management techniques are likely to lead to greater restoration and rehabilitation success?
Past restoration and rehabilitation treatments may provide insight on changing practices, costs, and avenues for improvement

• What are the trends in landscape treatments related to restoration and rehabilitation in the Southwest?

• How do these trends relate to elements of successful restoration (or not)?
Core Dataset: Land Treatment Digital Library (LTDL)

- BLM lands only

From 1940 to 2015
Projects: 2542
Treatments: 3983
Treatments with spatial data: 60%
Treatments with recorded objectives: 30%
Seeding treatments with species data: 16%
Climate and vegetation type data & methods

• Four climate variables (4 km, PRISM): Total precipitation, precipitation in the driest quarter of the year, mean annual temperature, and temperature of the warmest quarter

• Compared climate of year of treatment and following treatment to 5 years + or – the treatment period

• Area of dominant vegetation types with LANDFIRE existing vegetation type (EVT, 30 m resolution)
Restoration/rehabilitation or resource extraction objectives

Classified objectives with key words into four categories
• restoration, resource extraction, combination, or uncategorized

Restoration key words
• erosion, restor*, rehab*, invad*, invas*, native, noxious, cheatgrass, diversity, grouse, habitat, tortoise, and wildlife

Resource extraction key words
• cattle, cow, forage, fuel, livestock, and timber, excluding cases where livestock exclusion treatments were indicated by the words ‘closure’ or ‘fence’
Treatments decreasing in sagebrush, increasing in annual grassland

- Dominant veg. types by area: Big Sagebrush, Pinyon-Juniper, Mesquite Woodland, Introduced Annual Grassland, Desert Scrub

Pseudo-$R^2 = 0.48$
Year x Veg Type p-value < 0.001
The major treatment types have changed over time. Vegetation & soil manipulation, seeding, and herbicide/weed treatments are most common.

Pseudo-R$^2 = 0.78$

Year x Trt p-value < 0.001
• Total and mean treatment area is increasing

• Increasing fires and fire-related rehabilitation funding may be responsible

Pseudo-$R^2 = 0.58$

Year p-value < 0.001
Are treatment objectives changing over time?

- Restoration and the combination of restoration & extraction key words are increasing

Pseudo-$R^2 = 0.53$
Year p-value < 0.001,
Year x Category p-value < 0.001
Greater diversity and proportion of native species in seeding

- Pseudo-$R^2 = 0.45$, Year p-value < 0.001
- Pseudo-$R^2 = 0.27$, Year p-value < 0.001
What are some of the top species in seed mixes?

Top five species in 1945-1954

1. Agropyron desertorum (non-native)
2. Agropyron cristatum (non-native)
3. Melilotus officinalis (non-native)
4. Pascopyrum smithii (native)
5. Bromus inermis (non-native)

Top five species in 2005-2014

1. Achnatherum hymenoides (native)
2. Sanguisorba minor (non-native)
3. Pascopyrum smithii (native)
4. Agropyron desertorum (non-native)
5. Poa secunda (native)

Photos from SEINET, swbiodiversity.org & Calphotos, calphotos.berkeley.edu
Are treatments generally applied in favorable climate years?

Mean annual temperature or mean temperature of warmest quarter
- 11 % of treatments, ≥ 90 % percentile

Total precipitation or precipitation of driest quarter
- 2-3 % of treatments, ≤ 10 % percentile
Methods, objectives, and extent of BLM treatments in the Southwest US have changed over time

- Treatment area is increasing
- Invasive species and fire-related treatments are increasing
- Seeding treatments are increasingly diverse, and native-dominated
- Restoration and rehabilitation objectives are more common
- Treatments are not necessarily applied in ideal climate conditions
Implications and future directions

What might be limiting application of successful restoration practices?

• Cost of complex multi-year treatments
• Policy constraints: such as rapid treatment after fire
• Long-term monitoring and detailed documentation are rare!
• Conflicting management goals: resource extraction to conservation
• Availability of appropriate seed materials
• Medium-term climate predictions (2-3 years)
Acknowledgements

Restoration Assessment & Monitoring Program for the Southwest (RAMPS)

Land Treatment Digital Library http://ltdl.wr.usgs.gov/: David Pilliod & Justin Welty & the many others who have worked on this project
Questions? Comments?
scopeland@usgs.gov

RAMPS is planning on hiring a Restoration Coordinator!
Contact Seth Munson: smunson@usgs.gov or
Brad Butterfield: bradley.butterfield@nau.edu