

### Restoration Objectives



- From the National Seed Strategy:
  - "Action 2.1.2 Develop predictive models of climate change effects on target restoration species ... using 20-year or mid-century climate models."
- Which species are going to be useful for restoration under climate change?

#### Can we "Prestore"?



- For which species does a site represent suitable habitat now and in the future?
- How far into the future?
- Use restoration grass species on the CP as a case study

#### Research Questions



- At what time horizons is prestoration likely to be possible with the current list of target grass species for the CP?
- How many "new" species need to be added to this list in order to make up for habitat losses of current target CP grasses?
- What are the characteristics of these "new" species, and where will they need to come from?

# Methods: CPNPI Priority List

**Common Name** 

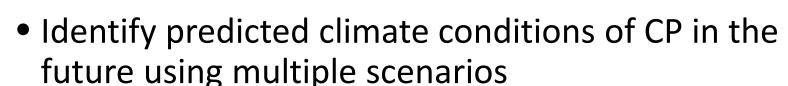


 24 species targeted in the CPNPI 5-year strategy plan (2009)

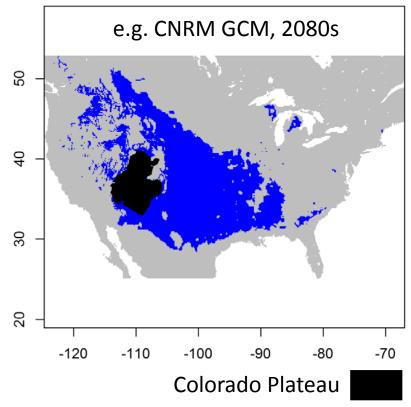
Legend for Plant Communities: ARTR: It sagebrush, BB: blackbrush, DS: desert shrugher: GW: greasewood, MB: mountain brush, Finyon pine-juniper, PP: ponderosa pine, SD salt desert shrub, Sands: sandy soils, Stands shortgrass prairie, TG: tallgrass prairie

|                                    |                           | Obicitatio Hallic        | i lant communico              |
|------------------------------------|---------------------------|--------------------------|-------------------------------|
| P]                                 | Indian ricegrass          | Achnatherum hymenoides   | Sands, ARTR, SDS              |
|                                    | Needle grama              | Bouteloua aristidoides   | BB, DS, PJ                    |
|                                    | Six weeks grama           | Bouteloua barbata        | DS                            |
|                                    | Side oats grama           | Bouteloua curtipendula   | SDS, DS, SG, ARTR, PJ, PP     |
|                                    | Blue grama                | Bouteloua gracilis       | DS, SG, SDS, ARTR, PJ, PP     |
|                                    | Mountain brome            | Bromus marginatus        |                               |
|                                    | Buffalograss              | Buchloe dactyloides      | SG                            |
| in<br>Shrub,<br>PJ:<br>SDS:<br>SG: | Bottlebrush, squirreltail | Elymus elymoides         | DS, GW, SDS, ARTR, PJ, PP, MB |
|                                    | Slender wheatgrass        | Elymus trachycaulus      | ARTR, PJ, MB, DS              |
|                                    | Needle and thread         | Hesperostipa comata      | Sands, DS, ARTR, PJ, MB       |
|                                    | Galleta grass             | Hilaria jamesii          | SDS, BB, DS, PJ, GW           |
|                                    | Junegrass                 | Koeleria macratha        | ARTR, PJ, MB, DS              |
|                                    | Scratchgrass              | Muhlenbergia asperifolia | SDS, ARTR, PJ                 |
|                                    | False buffalograss        | Munroa squarrosa         | DS, SDS, ARTR, PJ, SG         |
|                                    | Switchgrass               | Panicum virgatum         | SG, TG, PJ, Meadows           |
|                                    | Western wheatgrass        | Pascopyrum smithii       | ARTR, DS, PJ, MB              |
|                                    | Muttongrass               | Poa fendleriana          | ARTR, DS, PJ, MB              |
|                                    | Sandberg's bluegrass      | Poa secunda secunda      | DS, GW, ARTR, PJ, MB, SDS     |
|                                    | Bluebunch wheatgrass      | Pseudoroegneria spicata  | ARTR, DS, PJ, MB, PP          |
|                                    | Little bluestem           | Schizachyrium scoparium  | SG, DS, PJ, PP, TG            |
|                                    | Alkali sacaton            | Sporobolus airoides      | SDS, GW                       |
|                                    | Spike dropseed            | Sporobolus contractus    | DS, PJ                        |
|                                    | Sand dropseed             | Sporobolus cryptandrus   | PJ, Sands, ARTR               |
|                                    | Six wook foscus           | Vulnia actoflora         | CDC DR DI ADTO CW CC          |

**Scientific Name** 


**Plant Communities** 

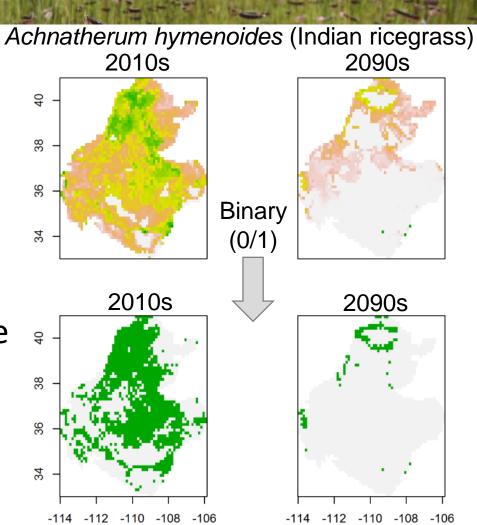
#### Methods: Climate Scenarios




- 10 general circulation models (GCMs)
  - Statistically downscaled to 15x15km resolution
- 2 emissions scenarios (RCP4.5 and RCP8.5)
  - Only presenting results for RCP8.5 (sadly, our current global trajectory)
    - 4.5 results are similar, but with a plateau in emissions and associated losses of suitable habitat after mid-century
- 9 decades
  - 2010s-2090s

# Methods: Identifying Potential New Species




- Project those conditions on to current geographic space
- Identify species in that geographic space using the Global Biodiversity Information Facility (GBIF)
- Take top 48 species in terms of number of occurrences found across all climate scenarios



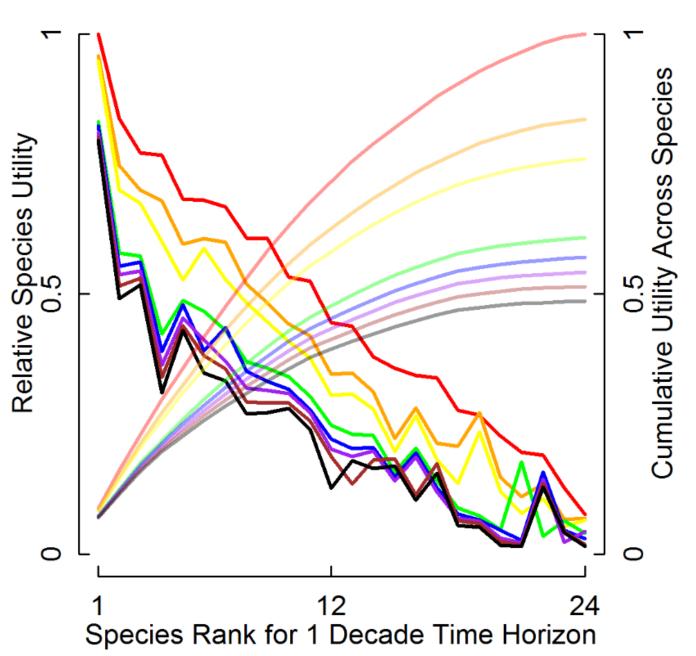
# Methods: Climate Niche Modeling



- MAT, MAP
- Seasonality
- Combos of precip and temp
- MaxEnt ensembles from multiple runs
- Apply species-specific binary thresholds to create maps of predicted suitable/unsuitable habitat at present and in future



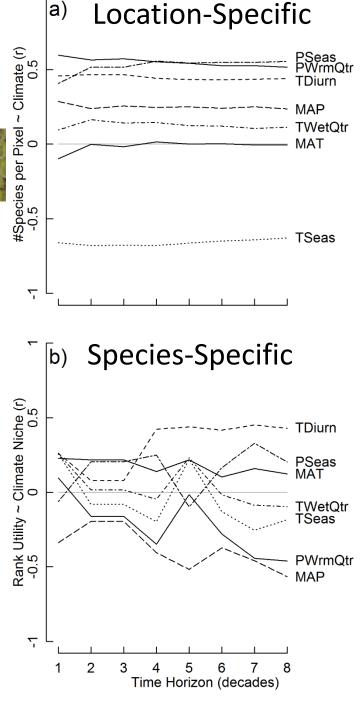
#### Methods: Prestoration Potential




- In each pixel, identify:
  - For which CP target species does that space represent suitable habitat now and 1, 2 ... 8 decades into future
  - Loss of suitable species with increasing time horizons
  - Climatic correlates of species utility
- Given loss of suitable species with increasing time horizons, determine:
  - Which new species could be substituted for current target CP species
  - How many new species from the pool of 48 are required regionally to make up for losses of target CP species suitability

### **Current Species Utility**

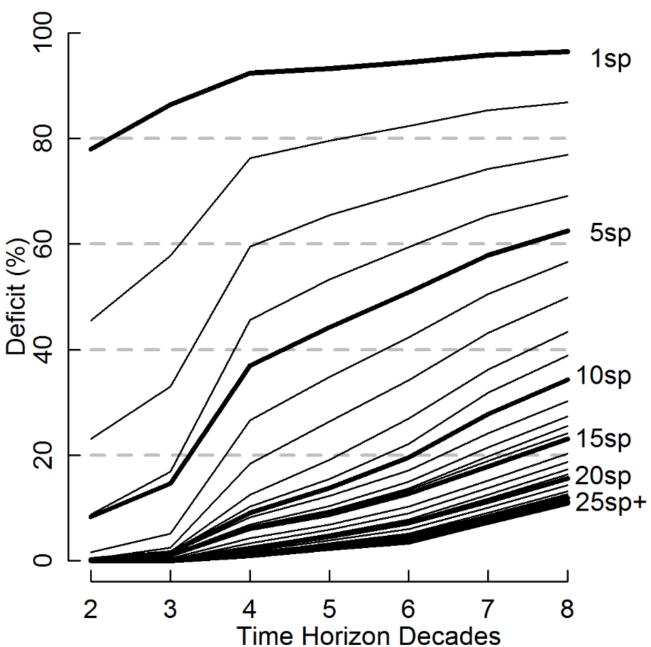



- Species relative rankings of utility – in terms of prestorable area – remain relatively constant with increasing time horizons
- Loss of ~40% of prestorable area by mid-century (~50% by end of century)



#### Utility as a Function of Climate Niche

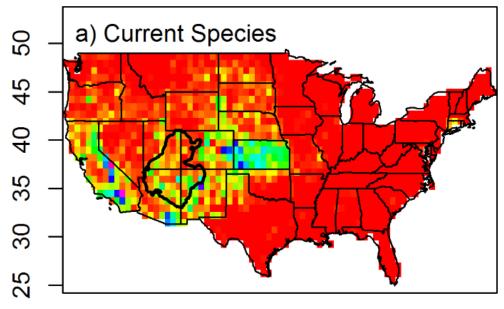


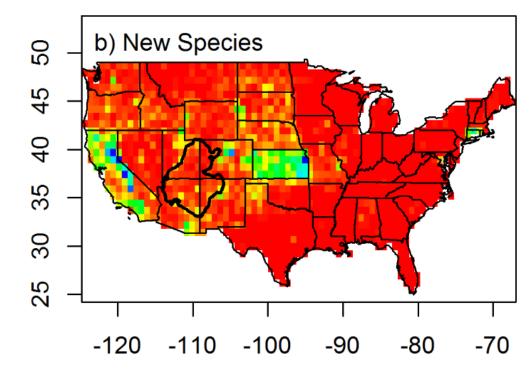

- Location-specific: Prestoration potential greatest in habitats with a wet warm season, high diurnal temperature fluctuations but low seasonal temperature fluctuations (monsoonal habitats with high VPD)
- Species-specific: Prestoration potential greatest for species from dry environments with high diurnal temperature fluctuations (arid-adapted species)



### Utility of New Species




- 6 "new" species could make up for nearly all of the lost suitable habitat for the current target species list at a 2-3 decade time horizon
- Still only ~ dozen could make up for most losses by mid-century




#### Geographic Distribution



- Most already occur on the CP, just not super common
- Tend to come from somewhat hotter environments (correlation with climate niche r = 0.40, P = 0.004)

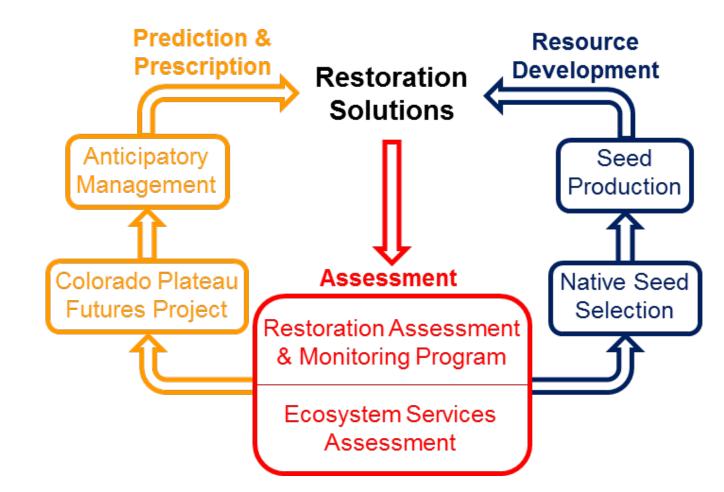




#### Conclusions



- Current list of target species does a decent job of predicted suitability for the future, considering that climate change wasn't an explicit driving factor in their selection
- Utility is predictable based on climate of a site and climate niche of a species, though certainty in these estimates is variable
- "New" species to add would only increase the priority list by ~50%
- Communication among managers of adjacent ecoregions could help supply the necessary diversity of seed resources to deal with climate change


#### Caveats



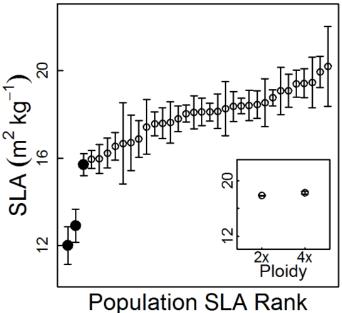
- This does not account for:
  - local adaptation/intraspecific variation
  - target ecosystem services associated with different species
  - soils, disturbance, etc.
- These limitations speak to broader discussions we've been having over the last two days

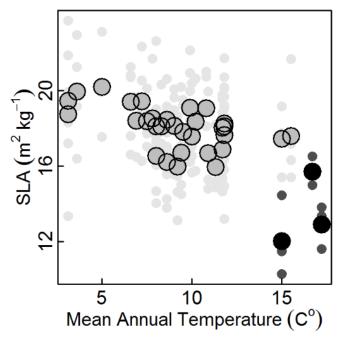
## Restoration Solutions in a Changing World

- Collaborations between Merriam-Powell Center for Environmental Research (NAU) and USGS Southwest Biological Science Center
- Dr. John Bradford
- Dr. Seth Munson
- Dr. Troy Wood



# Functional Traits: Translating Environmental Variation into Ecosystem Services





- <u>Functional diversity</u>: A compromise between "local is best" and "one size fits all"
- Focus on functional traits: organismal characteristics that predict responses to, and effects on, the environment (Lavorel and Garnier 2002)

### Functional Approach



- In Bouteloua gracilis, specific leaf area (SLA) is:
  - Significantly (broad-sense) heritable (i.e. genetically constrained)
  - Correlated with population source annual temperature
- Current cultivars are functionally pretty different from natural populations
- Could select seed sources based on their functional trait values and match them to climate and ecosystem service objectives
- Focus on functional diversity within species

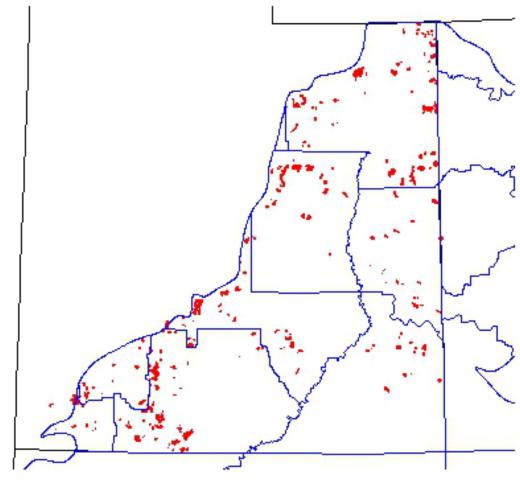




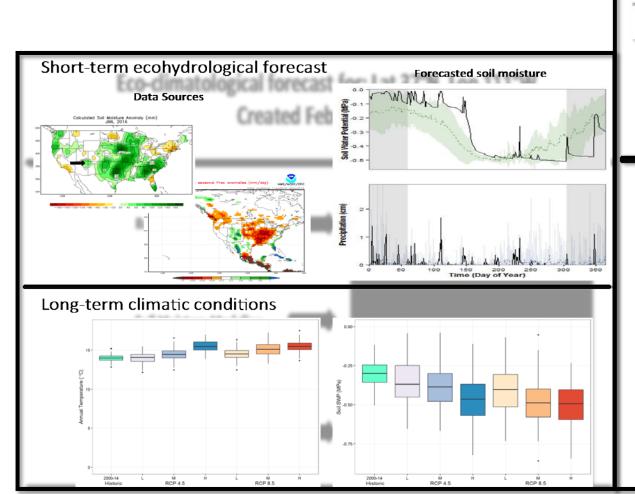
Butterfield & Wood 2015 Plant Ecology

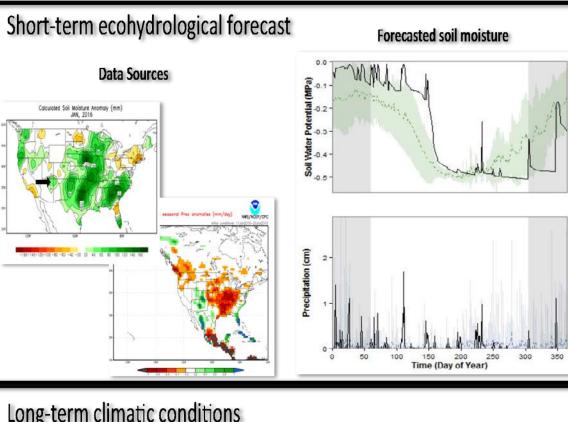
#### Functional Approach



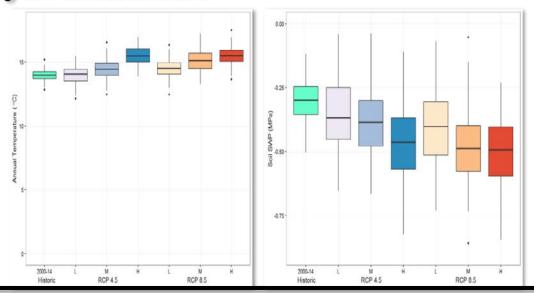

- Need to know which functional traits are heritable, and which are more plastic
- Do heritable functional traits exhibit consistent environmental correlations across species?
- Carla Roybal is answering this question through:
  - Meta-analysis of grass common garden studies globally
  - Greenhouse experiment focused on CP and GB species, particularly root traits




# Ecosystem Service Assessments to Quantify Restoration Success




- Ecosystem service assessments of WRI projects
  - Soil stabilization/aggregate formation
  - Forage quality/quantity
  - Wildlife habitat
  - Pollinator habitat
- Related to environment, disturbance, treatments and seed mixes




#### Anticipatory Management





#### Long-term climatic conditions



