Stormwater Capture and Recharge to Enhance Riparian Habitat

Michael Milczarek, Cyrus Miller, Karen Riggs, Brooke Bushman, Robert Rice, Lindsey Bunting, and Laurel Lacher

Special Thanks to Laura Norman (and Valer Austin)

Stormwater Capture and Recharge

- Highly disturbed watersheds
- Stormwater capture/detention:

Reduce flooding/peak flows

Increase groundwater recharge

Support riparian habitat (via groundwater storage)

Sediment reduction/improve water quality

Design issues/questions:

Scale Hydrogeology Design parameters and longevity?

Stream Flow Disturbance

- http://d32ogoqmya1dw8.cloudiront.net/images/introgeo/socratic/examples/Hydrograph.jpg
- Changes in upstream watershed characteristics
- Channel degradation
- Reduced groundwater availability/quality

Watershed Scale Characteristics

Hydrogeologic Conditions

- Not all locations are created equal
 - Infiltration rates/ permeability/lithology
 - Depth to groundwater /gradients
 - Distance from riparian area

Case Study - San Pedro River

- Groundwater mining affecting flows in the San Pedro River
- Interagency/public/private partnership to protect river
- CONCEPT: Flood control basins to capture stormwater and recharge groundwater by river
 - o Groundwater modeling to identify best places to help base flow
 - Surface water modeling to estimate surface water flow and urban enhanced runoff
 - GIS screening and field investigations
 - Detention/recharge basin(s) design
- Pilot project at flood control basin designed to protect school

Surface Water Modeling

- How much stormwater runoff, how much UER?
- AGWA/KINEROS
 - Highly detailed watershed model
 - Model individual events from 57 year precipitation record
 - Use of regression relationships for other watersheds
- Model runs to predict stormwater runoff and infiltration:
 - pre-urbanized vs urbanized conditions,
 - w/ and w/o detention basins
 - high and low permeability basins

Palominas Watershed

Predicted Runoff and Infiltration – Palominas Wash

	Percent Impervious Surface Area	Average Annual Precipitation		Average Annual Runoff into Channels	Average Annual Channel Infiltration	Average Annual Channel Recharge ¹	Average Annual Inflow to Basin	
	Percent	cm	in	acre-feet	acre-feet	acre-feet	acre-feet	
	0.00%	37.34	14.70	294	90.7	35.4	203	Predicted
	8.00%	37.34	14.70	530	178	69.6	351	UER =
-								148 afa

Palominas Detention/Recharge Basin Design

Average Precipitation (7/23/14 – 6/30/15)

Basins 1-3 Water Depth (7/23/14 – 6/30/15)

Depth to Groundwater (7/23/14 – 6/30/15)

Palominas Recharge Facility Works! But.....

- Odile stormwater runoff:
 - Models predicted about 270 acre-feet of runoff
 - Palominas (San Pedro River) USGS gauge:
 - Contributing watershed 100X Palominas watershed
 - Approximately 35,000 acre-feet
 - So, flow should have been 270 to 350 acre-feet
- Monitoring data indicated 13 acre-feet (5% of predictions)
- Where did the runoff go??!!!
 - Watershed surface conditions
 - High permability areas
 - Low intensity precipitation, Only one year of data

What we know and what we don't

- Small is good....
 - High capture efficiency more is better
 - Generally limited to upper parts of watershed
 - Shallow groundwater conditions facilitate riparian recovery
 - Enhances vegetation and likely increases mountain front recharge
- Larger watershed capture and recharge facilities
 - How big to design? need modeling AND monitoring
 - Need to find appropriate hydrogeology
 - Design for sediment control
 - Need to monitor BEFORE and AFTER

Thank you!

Acknowledgments:

- Cochise County
- The Nature Conservancy
- JE Fuller Hydrology and Geomorphology
- The Walton Foundation

Mike@gsanalysis.com