Efforts to Value Ecosystem Services Associated with an Innovative Application of Stream and Wetland Restoration in Green Infrastructure

> Joe Berg, Biohabitats jberg@biohabitats.com

Represent ~85% of stream length and function like ag ditches

Our Broken Stream Systems Function as Major Sources & Conveyors of Sediment & Phosphorus

				port	
0 80	.:090 a	o Bo	80.0		20.00 00 0.00
*	0	\square	0	0	
depositio	'n	conveyor belt		•	
8. 80, 8.600.00					

Zone of Frazion/Transport

Zone of Deposition

Adapted from Kondolf, M. (1997). Environmental Management, 21, 533-551.

Why a Universal Restoration Credit Doesn't Make Sense (CWP Literature Review)

Processes and Services

- Flood reduction 15% increase in real estate value for homes in vicinity of restored stream
 - Peak attenuation, extended time of concentration
 - Reduce shear stresses / erosion
 - Protects property from erosion loss
 - Aesthetically pleasing element of community

Increased property value (aesthetics, park amenity, etc.) -\$50,000 per lot in development

Hydrographs during individual storms WILELINOR

Source: Solange Filoso, University of Maryland

Processes and Services

- Water quality enhancement / TMDL Attainment (TSS, TN, TP, ...)
 - \$15,000 per lb of PO₄ in Richmond, Va
 - \$10 ft³ Maryland's cost of BMP treatment
 - 1,000 ft project reconnecting floodplain=~\$2 million in comparable water quality benefits
 - Average cost of stream restoration ~50% of status quo stormwater infrastructure (drop structures, pipe, ...)
 - Require treatment of 40% of impervious area not previously treated (e.g., highways, parking lots...)

a shina s

GUIDANCE FOR NATIONAL POLLUTANT DISCHARGE ELIMINAT STORMWATER PERMITS

JUNE (DRAFT) 2011

Step Pool Storm Conveyance (MDE)

승규가에 승규가에 승규에서 승규에서 승규가 나는 것이 않는 것이 않는 것이 않는 것이 않는 것이 없다.

410-537-3000 MARTIN O'MALLEY, GOVERNOR

00 | 800-633-6101 | TTY Users: 800-735-2258 | Anthony G. Brown, Lt. Governor | Robert M.

Table 4. Structural BMP Retrofit Matrix

Step Pool Storm Conveyance (MDE)

BMP Practice	TN	TP	TSS
CBP Structural BMPs		William Statement	
Dry Detention Ponds	5%	10%	10%
Hydrodynamic Structures	5%	10%	10%
Dry Extended Detention Ponds	20%	20%	60%
Wet Ponds and Wetlands	20%	45%	60%
Infiltration Practices	80%	85%	95%
Filtering Practices	40%	60%	80%
Vegetated Open Channels	45%	45%	70%
Erosion and Sediment Control	25%	40%	40%
Stormwater Management by Era			
Development Between 1985 - 2002	17%	30%	40%
Urban BMP Retrofit	25%	35%	65%
Development Between 2002 and 2010	30%	40%	80%
Development After 2010	50%	60%	90%
ESD to the MEP from the Manual	ar underhusers	an in the start from the	the art way
Green Roofs	50%	60%	90%
Permeable Pavements	50%	60%	90%
Reinforced Turf	50%	60%	90%
Disconnection of Rooftop Runoff	50%	60%	90%
Disconnection of Non-Rooftop Runoff	50%	60%	90%
Sheetflow to Conservation Areas	50%	60%	90%
Rainwater Harvesting	50%	60%	90%
Submerged Gravel Wetlands	50%	60%	90%

50% 60% Micro-Bioretention 3070 00% 9070 Rain Gardens 50% 60% 90% Grass, Wet, or Bio-Swale 50% 60% 90% Enhanced Filters 50% 60% 90% Additional Structural BMP Guidance 90% Redevelopment (MDE) 50% 60% Existing Roadway Disconnect (MDE) 60% 50% 90%

50%

60%

90%

Processes and Services-cont'd

Improved aquatic habitat – on and off-site
 Difficult to assign value, but especially critical!
 Infrastructure protection (gravity sewer, roads...)

- One County in Maryland, valued at \$500 million
- 26 counties, plus watershed groups, cities and incorporated towns, other MS4s (highway departments, utilities,...)

Reconnect Stream

Raising groundwater elevation to near top of bank
would store 8.5 ac-ft of water

•Extend annual baseflow by 19 days •may allow successful trout reproduction 3 of 5 years, currently 1 of 5 years

Significant benefits to

Increased hyporheic flow and processing
Restoration of degraded wetland hydrology
suppression of invasive plants – reduced remineralization of soil organic material

Solange Filoso, University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory

Infrastructure Repair & Replacement

Existing repair budgets insufficient Stormwater Utilities generating \$ to close gap Stormwater green infrastructure, stream restoration a significant component Can be used as agricultural BMPs that don't reduce crop yield, edge of field treatments ▶ TMDL requirements huge source of revenue, tens of billions of dollars in a decade

Stream Restoration is Expected to Increase Substantially to Meet the WIP Targets

Urban Stream Restoration Expected by 2025 in Bay State Phase 2 Watershed Implementation Plans					
	Urban Stream	Non-Urban Stream			
	Restoration	Restoration			
State	Linear Feet (Miles)				
Delaware	200 (0.02)	63,202 (12)			
District of Columbia	42,240 (8)	0			
Maryland	2,092,325 (396)	73,975 (14)			
New York	26,500 (5)	337,999 (64)			
Pennsylvania	55,000 (10)	529,435 (100)			
Virginia	116,399 (22)	104,528 (20)			
West Virginia	0	19,618 (3.7)			
TOTAL	441 miles	214 miles			

¹ Acres under urban and non urban stream restoration in each state by 2025 as reported in the Phase 2 Watershed Implementation Plan submissions to EPA in 2012, as summarized in May and July 2012 spreadsheets provided by Jeff Sweeney, EPA CBPO. Totals are inclusive of historical and planned implementation. Tributary to Rock Creek Washington, DC

Pre Restoration

~10 ft Incised

Tributary to Rock Creek Washington, DC

October 2011

Connected to Riparian Zone

Questions?