Biogeochemistry of C and nutrients in peatlands:

Applied aspects

Leon Lamers
Aquatic Ecology & Environmental Biology
Institute for Water and Wetland Research
Radboud University Nijmegen

- Biogeochemical processes wet / dry
- Decomposition and eutrophication
- Role of water & sediment quality
- Applied ecological issues: desiccation / restoration / wetland creation / water storage
Natural Development of Raised Bogs in Ireland

- **7000 BC**
 - Mesolithic fisherman.
 - Glacial Moraine
 - Hazel and pine forest.

- **1500 BC**
 - Oak, Ash, Elm and farmland.
 - Bronze Age "hoard"
 - Peat
 - Fen

- **500 BC**
 - Trees on bog during dry period.
 - Heather
 - Birchwood and farmland.
 - Peat

- **500 AD**
 - Trees engulfed by the peat.
 - Marshy fen

- **1900 AD**
 - Turf drying in the Sun.
 - Cutting turf for fuel.
 - Agricultural drainage scheme.
Peatlands

1. High efficiency for C storage: low pO$_2$, low pH (bogs), recalcitrant organic matter (e.g. phenolic compounds), high C refixation potential.

2. Drainage, combustion, eutrophication, and S-pollution; transition C sink to source.

2. Biogeochem. key processes, ecosystem-microbial level;
 - global change (T, CO$_2$, CH$_4$, H$_2$O, N, S)
 - flooding risks (peat settlement)
 - reversal C sink-source transition (peatland restoration)
decomposition - waterlogged

mmol m⁻² day⁻¹

PMW ZW WI WO

bog fen

CH₄ CO₂

Lamers et al. in prep
Temperature and CO₂ concentration in the atmosphere over the past 400,000 years (from the Vostok ice core)

CO₂ concentration, ppmv

Temperature change from present, °C

Year before present (present = 1950)
Without greenhouse effect most of the earth’s surface covered with ice: 33°C colder!
Atmospheric Carbon Dioxide
Measured at Mauna Loa, Hawaii

Annual Cycle

Carbon dioxide concentration (ppmv)
temperatuurverhoging: voorspellingen
Global Carbon Cycling

Increased C sources (loss)
- Combustion fossil organic C
- Clearing of (rain)forests
- Drainage and increased T peatlands: decomposition
- Increased T permafrost
- Increased T decomposition other ecosystem types

Increased C sinks (sequestration)
- Increased primary production terrestrial ecosystems
- Increased primary production oceans (?)
Additional effect increased CO$_2$

- Higher primary productivity leads to higher proportion of recently assimilated organic carbon
- Higher DOC losses

 Freeman et al. Nature 2004

- Changes in plant composition due to interspecific competition
• Increased primary production?

- C4 plants
- dry tropics

[C4 plants diagram]

- C3 temperate regions
- actual level

[C4 CO₂ assimilation graph]

- CO₂ assimilation (µmol CO₂ m⁻² s⁻¹)
- Ambient CO₂ concentrations, Cₐ (µbars)
Figure 1. The global carbon cycle. All pools are expressed in units of 10^{15} gC and all fluxes in units of 10^{15} gC yr, averaged for the 1980s. Modified from Schlesinger (1997).
Northern peatlands: 20-30% of the global soil C stock
Decomposition of drained peatlands to 800 million tonnes CO₂ a year

- South East Asia: 62%
- Rest of Asia (without Russia): 16%
- Europe (without Russia): 9%
- Americas: 8%
- Africa: 4%
- Russia: 1%
Vulnerable Carbon Pools

LAND

- Permafrost: 900 Gt C
- High-latitude peatlands: 400 Gt C
- Tropical peatlands: 100 Gt C
- Vegetation subject to fire and/or deforestation: 650 Gt C

OCEAN

- Methane Hydrates: 10,000 Gt C
- Solubility Pump: 2,700 Gt C
- Biological Pump: 3,300 Gt C
Melting permafrost peatlands at Noyabrsk, Western Siberia. Succow (IMCG)

Carbon from the Pleistocene era
Pristine peat swamp forest, Sumatra.

Kalimantan: Peatland forest on fire
- Peat landscape: lakes, marshes, bogs, meadows - gradients pH-O₂-nutrients
- High biodiversity: succession
- Deterioration: desiccation, eutrophication, Spp loss, C sink-source transition
C-loss & land subsidence

[Map showing areas of different land subsidence levels in the Netherlands]

TNO / NITG / RWS
Relative Biomass (%) vs. CO₂ concentration in water layer (µmol L⁻¹)

Paffen & Roelofs Aquat Bot 1991
$\frac{\text{C-efficiency}}{\text{13C-CH}_4 \text{ into Sphagnum sterols:}}$

10-15% of total C source
Peat extraction

Vincent van Gogh 1883
Airborne pollution

N concentration Sphagnum (mg g^-1)

total inorganic N-deposition (kg ha^-1 a^-1)

Sphagnum "H-filter" unsaturated

Maier Oikos 1988
Branzetti et al. PNAS 2004
Eutrophication
Nutrient limitation

- **P** o-phosphate

 e.g. marshes, fens

- **N** ammonium, nitrate

 e.g. fen vegetations, moorland pools, bogs

 often: N+P limitation

- **C** inorganic carbon

 e.g. moorland pools, lakes, bogs

 (C+N limitation)

- **K** some fen meadows

(Eutrophication always related to kind of nutrient)
External eutrophication:
Eutrophication by extra input of nutrients from outside the system

Internal eutrophication:
Eutrophication by increased mobilization of nutrients inside the system (particularly in peatlands)

PO$_4^{3-}$ \quad Fe^{3+}(O)(OH) \quad Ca (O)(OH) \\
\rightarrow \quad PO$_4^{3-}$ \sim Fe^{3+}(O)(OH) \quad PO$_4^{3-}$ \sim Fe^{2+} \\
Ca_{10}(PO$_4$)$_6$(OH)$_2$ \quad (CaHPO$_4$) \\
\rightarrow \quad Org-P
Decomposition:

Metabolic breakdown of organic matter (humus, peat) to simple organic and inorganic molecules, generating energy.

Mineralisation:

The transition of a nutrient or another substance from organically-bound form to water soluble inorganic form, as a result of biological or (inorganic) chemical processes.
Regulation of decomposition / mineralisation in peatlands

- **Nutrient concentrations**

- Concentration / degradability organic matter

- Alkalinity (ANC)

- Ion strength: Cl⁻

- Electron acceptor availability (microbial redox reaction):

 \[
 \text{O}_2, \text{NO}_3, \text{Fe, SO}_4^{2-} : \\
 \text{SO}_4^{2-} + 2 \text{CH}_2\text{O} \rightarrow \text{HS}^- + \text{HCO}_3^- + \text{CO}_2 + \text{H}_2\text{O} \\
 \text{mineralisation (N, P, K)} \\
 \text{sulphide} \\
 \text{P mobilisation (Fe ~ P)} \\
 \text{acid buffering}
 \]
(bicarbonate) alkalinity

Smolders Ph.D. Thesis 1995
Smolders et al. Chem. Ecol. 2006
electron acceptor availability

Sweet track – Somerset Levels – 3806 BC

Decomposition

S: low high

electron acceptor availability

oxygen

\[\text{CO}_2 + \text{CH}_4 (\text{mmol m}^{-2} \text{d}^{-1}) \]

waterlogged
moist
dry

0 50 100 150 200
WI WO

Lamers et al. in prep.
Regulation of decomposition / mineralisation in peatlands

- **Phenolic compounds regulate hydrolase activity**
- **Drainage (O\(_2\) intrusion) stimulates phenol oxidase, lowering phenolics, stimulating decomposition**

Freeman et al. Nature 2001

Table 1 Effects on enzyme activities

<table>
<thead>
<tr>
<th>Effect of oxygen on enzyme activity</th>
<th>Control</th>
<th>Manipulated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphatase</td>
<td>66 ± 2.3</td>
<td>35 ± 1.4</td>
</tr>
<tr>
<td>Phosphatase</td>
<td>571 ± 2.4</td>
<td>387 ± 7.9</td>
</tr>
<tr>
<td>β-Glucosidase</td>
<td>237 ± 2.3</td>
<td>17.7 ± 12</td>
</tr>
<tr>
<td>Phenol oxidase</td>
<td>615 ± 93</td>
<td>4,350 ± 27</td>
</tr>
</tbody>
</table>

Effect of increasing phenol oxidase abundance

| Phenolics (µg l\(^{-1}\)) | 1,985 ± 55.4 | 1,444 ± 9.9 |
| β-Glucosidase | 10,677 ± 280 | 1,216 ± 180 |

Effect of phenolic removal on hydrolase activity

<table>
<thead>
<tr>
<th>Sulphatase</th>
<th>Control</th>
<th>Manipulated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphatase</td>
<td>3,707 ± 25</td>
<td>4,369 ± 180</td>
</tr>
<tr>
<td>β-Glucosidase</td>
<td>2,163 ± 180</td>
<td>2,163 ± 180</td>
</tr>
<tr>
<td>Xylosidase</td>
<td>116 ± 2.5</td>
<td>134 ± 5</td>
</tr>
<tr>
<td>Chitinase</td>
<td>243 ± 14</td>
<td>296 ± 3.5</td>
</tr>
</tbody>
</table>

Phenol oxidase activity (nmol 2-carboxy-2,3-dihydroindole-5,6-quinone formation min\(^{-1}\) per g peat), hydrolase activities (nmol methylumbelliferyl core formation min\(^{-1}\) per g peat) and phenolic compound concentrations (µg l\(^{-1}\)) are reported as mean ± s.e.
nitrate

Under investigation
Total N loss: 10-15 kg N ha⁻¹ day⁻¹

Fluorescence in situ hybridization (FISH) analysis of β-proteobacterial Thiobacilli

Van der Weele et al. FEBS Microbiol. Lett. 2006
sulfate

PhD Course on Restoration Ecology 2007

Lamers et al. ES&T 1998
sulfate

Lamers et al. Limnol Oceanogr 2002
Roelofs Aquat Bot 1991
Smolders & Roelofs Aquat Bot 1993
P-limitation

- **surface water**
 - sulfate

- **groundwater**
 - reduction
 - alkalinity, sulfide
 - iron

Connections:
- Atmosphere
- Iron
- Sulfate reduction
- Alkalinity, sulfide
N-limitation

eutrophication

HPO$_4^{2-}$

HS tox.

Fe defic.

mineralization

FeS$_x$ ~ Fe ~ P

alkalinity, sulfide

reduction
% damaged roots

C. disticha

J. acutiflorus

0 20 40 60 80 100

C 25 S 250 S
Carex disticha

Juncus acutiflorus
Stratiotes aloides

Smolders et al., 1996
Phragmites australis

- Armstrong et al., 1996
Caltha palustris

- Detoxifying toxicants

Van der Welle et al. Environ.Tox.Chem. 2006

Smolders & Roelofs New Phytol. 1996
Wetland restoration ?!
Rewetting measures in carr woods oxbow lakes

before
after

Stagnating high water table during summer generates strong eutrophication!!
Intensification of agriculture resulted in lower groundwater tables and desiccation of fens.
PhD Course on Restoration Ecology 2007
Rewetting by damming groundwater or inlet of allochthonous surface (river) water:
PhD Course on Restoration Ecology 2007

Stagnant, NO₃ low

Flowing, NO₃ high

Dubbroek carr
Stagnant, NO₃ low (µmol L⁻¹)

Lucassen et al 2004
Flowing, NO$_3$ high (µmol L$^{-1}$)
Kaldenbroek fen: no temporary desiccation (first two years)
Dubbroek: temporary desiccation

Lucassen et al 2005
Natural water table fluctuation: proof from 1617!

Rubens & Brueghel: Pan & Syrinx in Arcadia (Hollandica)
Towards a more natural hydrological regime:

- **Now:**
 - Winter *low:* drainage (agriculture)
 - Summer *hoog:* supply (agriculture, nature)

Artificial regime!

- **Future:**
 - Winter *higher:* water storage
 - Summer *lower:* modest desiccation

Profits:
- Less allochthonous water
- Less P-mobilisation, more P-binding
- Stimulation growth and germination helophytes (e.g. Reed)
- Stimulation germination aquatic macrophytes
- Detoxification (e.g. for sulphide)

Drawbacks (??):
- Desiccation and S mobilisation (??)
- Increased mineralisation (??)
- Problems for infrastructure, recreation, homes
PhD Course on Restoration Ecology 2007

Shallow peat lake (Geerplas, the Netherlands)

13 µmol/L!

Michels et al. 2007
Shallow peat lake (Geerplas, the Netherlands)

- Dredging
- Inlet P-stripped water!

13 µmol/L!

45 µmol/L!
sulfate
Flooding and wetland creation / restoration: seasonal effect?

- Winter
- Spring
- Summer

Sulphide (µmol/l)
- Wet + sulphate
- Wet
- Dry (-12 cm)

Phosphate (µmol/l)
- (5°C - 8/16 - flo)
- (20°C - 12/12 - flo)
- (20°C - 16/8 - dry)
Water storage

- Winter: less harm

In existing wetlands

- Spring/summer: high eutrophication risk (especially with alkaline, S-rich water)
- \(\Rightarrow \) not in oligo-/mesotrophic wetlands

In combination with wetland creation?

- Low conc. mobilisable P: - ok
- High conc. mobilisable P: - either remove top layer and P
- - or hypertrophic wetland
Measures?

1. Lower influx P N
2. Hydrological measures: decreased internal mobilization!

<table>
<thead>
<tr>
<th></th>
<th>Input '82-'92</th>
<th>Weerribben '98</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCO$_3^-$</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>SO$_4^{2-}$</td>
<td>1.5</td>
<td>0.3</td>
</tr>
<tr>
<td>Cl$^-$</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>PO$_4^{3-}$</td>
<td>0.5 / 1.5</td>
<td>2</td>
</tr>
<tr>
<td>Sediment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO$_4^{3-}$</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>Fe</td>
<td>3</td>
<td>30</td>
</tr>
</tbody>
</table>

Conclusions

- Global change effects complex: decomposition, primary production, changes vegetation
- Mineralization (partly) coupled to decomposition
- Internal eutrophication: pollutants from the past
- Water en soil quality
- Management (e.g. wetland restoration) should take account of these internal processes